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CIE Marks: 90

Exam Hours: 03 SEE Marks: 60

Theory of Computation

Course Learning Outcome (CLOs): After Completing this course successfully, 
the student will be able to…

CLO 1 Describe the concepts and formalisms used in formal language theory and automata theory, including the notions of 

regular and context-free languages, finite automata, pushdown automata, and Turing machines.

CLO 2 Understand the fundamental results and techniques in automata theory and complexity theory, such as the pumping 

lemma, decidability, NP-completeness, polynomial-time reductions, and approximation algorithms.

CLO 3 Create and design automata, regular expressions, context-free grammars, and Turing machines to solve problems and 

recognize languages.

CLO 4 Apply the concepts and techniques of automata theory to solve problems in various areas, such as computer science, 

linguistics, and engineering.

CLO 5 Identify the limitations of automata and formal language theory, and appreciate the broader implications of these 

limitations on the theory and practice of computer science.



SUMMARY OF COURSE CONTENT
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Recommended Books:

Sl. No. COURSE CONTENT HRs CLOs

1. Introduction: Formal language theory, Formal proof, Inductive proofs and Central concepts of automata theory. 6 CLO1

CLO2

1. Finite Automata: Deterministic finite automata, Nondeterministic finite automata, Finite automata with ε-transitions, 

Equivalence and conversion of deterministic and nondeterministic finite automata.

6 CLO3

1. Regular Expressions and Languages: Regular expressions, Algebraic laws for regular expressions, Regular languages, 

Pumping lemma.

6 CLO3

1. Context Free Grammar and Languages: Context free grammars, Parsing (or derivation) and parse trees, Ambiguity in 

grammars and languages, Normal forms for context-free grammars, Pumping lemma for CFL’s.

6 CLO3

CLO4

1. Push Down Automata: Push down automata, Acceptance by empty store and final state, Equivalence between 

pushdown automata and context-free grammars, Deterministic push down automata.

6 CLO4

1. Turing Machines: Turing machines, The church-Turing machine, Techniques for Turing machine construction, 

Configurations, Computing with Turing machines, Restricted Turing machines, Turing machines and computers, 

Combining Turing machines.

6 CLO4

CLO5

1. Undecidability and Complexity Theory: Recursively enumerable language, the undecidability of the halting problem, 

Undecidable problems about Turing machines, Post’s correspondence problem, Complexity theory including the 

classes P, NP, examples of problems in these classes, NP completeness, Polynomial time reducibility, The Cook-Levin 

theorem, examples of NP complete problems, approximation algorithms, and probabilistic algorithms.

6 CLO5

1. Introduction to Automata Theory, Languages, and Computation by John E. Hopcroft, Rajeev 

Motwani, and Jeffrey D. Ullman

2. Theory of Computation by Michael Sipser



ASSESSMENT PATTERN

Bloom's Category
Marks (out of 90)

Tests
(45)

Assignments
(15)

Quizzes
(15)

Attendance
(15)

Remember 5 03

Understand 5 04 05

Apply 15 05 05

Analyze 10

Evaluate 5 03 05

Create 5

Bloom's Category Test

Remember 7

Understand 7

Apply 20

Analyze 15

Evaluate 6

Create 5

CIE- Continuous Internal Evaluation (90 Marks)

SEE- Semester End Examination (60 Marks)



Week No. Topics Teaching Learning Strategy(s) Assessment Strategy(s) Alignment to CLO

1 Introduction to Theory of 

Computation

Lecture, multimedia, group 

discussion

Feedback, Q&A, assessment of 

LOs

CLO1

2 Finite Automata Explain DFA and NFA, conversion, 

and applications through 

interactive sessions and exercises

Feedback, Q&A, quizzes CLO2

3 Equivalence of NFA & DFA Explore equivalence proofs 

through lectures and problem-

solving workshops

Group activities, quizzes, 

assignments

CLO2

4 Regular Languages and 

Expressions

Lecture, multimedia, interactive 

sessions

Feedback, Q&A, group discussions CLO3

5 Context-Free Grammars and 

Languages

Lecture, multimedia, and practical 

examples on CFG creation and 

parsing techniques

Midterm Quiz, hands-on practice CLO4

6 Pushdown Automata Lecture and problem-solving 

sessions focusing on PDA and CFG 

relationships

Feedback, Q&A, assessment of 

LOs

CLO5

7 Turing Machines Implement Turing machines 

through hands-on practice and 

explore their significance

Group assignments, feedback, 

quizzes

CLO6

8 Revision and Recap Review through group discussions 

and interactive sessions to 

consolidate knowledge

Feedback, problem-solving 

assessments

CLO1-8

9 Practical Applications of Theory Hands-on exercises applying 

concepts to real-world 

computational problems

Case studies, group work CLO9



Week No. Topics Teaching Learning Strategy(s) Assessment Strategy(s) Alignment to CLO

10 Mid Examination Summative evaluation covering 

the entire course content

Written exam, case studies CLO1-9

11 Decidability and Computability Interactive discussions on 

undecidability problems and 

hands-on exploration of key 

topics

Feedback, Q&A, Midterm Exam CLO7

12 Complexity Theory Lecture, problem-solving 

sessions on P, NP, NP-complete, 

and NP-hard problems

Feedback, Q&A, quizzes CLO8

13 Equivalence of NFA & DFA 

(Revisited)

Deep understanding with 

further problem-solving on 

equivalence

Practical exercises, quizzes CLO2

14 Revision and Recap Consolidate topics with a focus 

on problem-solving and exam 

preparation

Final Term quizzes, feedback CLO1-8

15 Feedback and Future Directions Reflective discussions on the 

course and exploration of 

research opportunities

Participation feedback CLO10

16 Final 

Documentation/Presentation

Showcase application of Theory 

of Computation concepts in a 

practical or research project

Presentations, project 

assessment

CLO1-10

17 Final Examination Summative evaluation covering 

the entire course content

Written exam, case studies CLO1-10
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THEORY OFCOMPUTATION

The Theory of Computation is the branch of  

computer science that deals with how efficiently  

problems can be solved on a model of computation,  

using an algorithm.

The field is divided into three major branches:

Automata theory and language

Computability theory

Complexity theory



COMPLEXITY

THEORY

The main question asked in this area is “What makes some  

problems computationally hard and other problems easy?”

A problem is called “easy”, if it is efficiently solvable.

Examples of “easy” problems are (i) sorting a sequence of, say,  

1,000,000 numbers, (ii) searching for a name in a telephone  

directory.

A problem is called “hard”, if it cannot be solved efficiently, or if  

we don’t know whether it can be solved efficiently.

Examples of “hard” problems are (i) factoring a 300-digit integer  

into its prime factors.

Central Question in Complexity Theory: Classify problems

according to their degree of “difficulty”. Give a proof that

problems that seem to be “hard” are really “hard”.



COMPUTABILITY

THEORY

Computability theory In the 1930’s, G¨odel, Turing, and Church

discovered that some of the fundamental mathematical problems

cannot be solved by a “computer”.

To attack such a problem, we need formal definitions of the  

notions of computer, algorithm, and computation.

The theoretical models that were proposed in order to understand  

solvable and unsolvable problems led to the development of real  

computers.

Central Question in Computability Theory: Classify  

problems as being solvable or unsolvable.



AUTOMATA

THEORY

Automata Theory deals with definitions and properties of different  types of “computation models”. Examples 
of such models :

Finite Automata :These are used in text processing, compilers, and  hardware design.

Context-Free Grammars: These are used to define programming  languages and in Artificial Intelligence.

Turing Machines: These form a simple abstract model of a “real”  computer, such as your PC at home.

Central Question in Automata Theory: Do these models have

the same power, or can one model solve more problems than

the other?.



THEORY OFCOMPUTATION

Purpose and motivation :

oWhat are the mathematical properties of computer  

hardware and software ?

oWhat is a computation and what is an algorithm?  

Can we give mathematical definitions of these  

notions?

oWhat are the limitations of computers? Can

“everything” be computed?

Purpose of the TOC: Develop formal mathematical models of  

computation that reflect real-world computers.
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FINITE AUTOMATA

• We will use several different models, depending on the features we want to focus 
on. Begin with the simplest model, called the finite automaton.

• Good models for computer with an extremely limited amount of memory. For 
example, various household appliances such as dishwashers and electronic 
thermostats, as well as parts of digital watches and calculators.

• The design of such devices requires keeping the methodology and terminology of 
finite automata in mind.

• Next we will analyze an example to get an idea. 



FINITE STATE MACHINE

• The finite state machine represents a
mathematical model of a  system with certaininput.

• The model finally gives certain output.

• The input is processed by various states, these states are 
called as  intermediate states.

• The finite state system is very good design tool for the 
programs such  as TEXT EDITORS and LEXICALANALYZERS.



DEFINITION OF FINITE AUTOMATA

A finite automata is a collection of 5-tuple(Q,,,q0,F) Where,  

   Q is finite set of states, which is nonempty.

 is input alphabet, indicates inputset.

  is transition function or mapping function. We candetermine the 

 next state using thisfunction.

q0 is an initial state and is in 

F is set of final states.

 = Delta



FINITE AUTOMATA MODEL

• The finite automata can be represented 
asfollows:

Input TapeA B A B A B A B A B

Finite  
Control

Tape  
Reader

Input Tape: It is a linear tape having
some number of cells. Each input
symbol isplaced in eachcell.

Finite Control:The finite control
decides the next state on receiving
particular input from inputtape.

Output



EXAMPLE

Automatic doors swing open 
when sensing that a person is 
approaching.

An automatic door has a pad 
in front to detect the presence 
of a person about to walk 
through the doorway.

Another pad is located to the 
rear of the doorway so that – 

The controller can hold the 
door long enough for the 
person to pass all the way 
through.

The door does not strike 
someone standing behind 
it as it opens.

Front

pad

Rear

pad

Figure: Top view of an automatic door

CLOSED OPEN

REAR

BOTH

NEITHER

REAR

BOTH

FRONT

FRONT

NEITHER

Figure: State diagram for Automatic door controller

Input Signal

NEITHER FRONT REAR BOTH

State
CLOSED CLOSED OPEN CLOSED CLOSED

OPEN CLOSED OPEN OPEN OPEN

Figure: State Transition table for automatic door controller



TERMINOLOGY

• The above figure is called state diagram of M1.

• It has three states, labeled q1, q2, and q3.

• The start state is q1, indicated by the arrow pointing at it from no where.

• The accept state, q2, is the one with a double circle.

• The arrow going from one state from another are called transitions.

• The symbol(s) along the transition is called label.

M1 works as follows – 

The automaton receives the symbols from the input string one by one from left 
to right.

After reading each symbol, M1 moves from one state to another along the 
transition that has the symbol as its label. 

When it reads the last symbol, M1 produces the output.

The output is ACCEPT if M1 is now in an accept state and REJECT if it is not.

q1 q2 q3

0
01

1

0,1
Figure: A finite automaton called M1 that has three states.



SIMULATION

After feeding the input string 1101 to the above machine, the processing proceeds 
as follows – 

Start in state q1;

• Read 1, follow transition from q1 to q2;

• Read 1, follow transition from q2 to q2;

• Read 0, follow transition from q2 to q3;

• Read 1, follow transition from q3 to q2;

Accept, as the machine M1 is in an accept state q2 at the end of the input 
string.

0 1

q1 q2 q3

01

0,1

1101
1101

101

01

1

ε

Figure: Finite Automaton M1.



TYPES OF AUTOMATA

Finite Automata

Deterministic  
Finite Automata

Non Deterministic  
Finite Automata



TYPES OF AUTOMATA
• Deterministic Finite Automata: The Finite Automata is called

Deterministic Finite Automata if there is only one path for a
specific input from current state to next state.

It can be represented as follows:

• A machine M = (Q,,,q0,F) Where ,

Q is finite set of states, which is non empty.

 is input alphabet, indicates input set.

 is transition function or mapping function. We can

determine the next state using this function.

Where :Q X  -> Q

q0 is an initial state and is in Q
 
 F is set of final states.



TYPES OF AUTOMATA
• Non Deterministic Finite Automata: The Finite Automata is called

Non Deterministic Finite Automata if there are more than one
path for a specific input from current state to next state.

It can be represented as follows:

• A machine M = (Q,,,q0,F) Where ,

Q is finite set of states, which is non empty.

 is input alphabet, indicates input set.

 is transition function or mapping function. We can

determine the next state using this function.

Where :Q X  -> 2Q

q0 is an initial state and is in Q
 
 F is set of final states.



DIFFERENCE BETWEEN DFA &
NFA

Deterministic Finite
Automata

Non Deterministic Finite
Automata

For Every symbol of the alphabet,
there is only one state transition in
DFA.

We do not need to specify how does
the NFA react according to some
symbol.

DFA cannot use Empty String transition. NFA can use Empty String transition.

DFA can be understood as one machine. NFA can be understood as multiple little
machines computing at the same time.

DFA will reject the string if it end
at other than  accepting state.

If all of the branches of NFA dies or
rejects the string, we can say that NFA
reject the string.

Backtracking is allowed in DFA. Backtracking is not always allowed in
NFA.

DFA is more difficult to construct. NFA is easier to construct.
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TYPES OF AUTOMATA

Finite Automata

Deterministic  
Finite Automata

Non Deterministic  
Finite Automata



TYPES OF AUTOMATA
• Deterministic Finite Automata: The Finite Automata is called

Deterministic Finite Automata if there is only one path for a
specific input from current state to next state.

It can be represented as follows:

• A machine M = (Q,,,q0,F) Where ,

Q is finite set of states, which is non empty.

 is input alphabet, indicates input set.

 is transition function or mapping function. We can

determine the next state using this function.

Where :Q X  -> Q

q0 is an initial state and is in Q
 
 F is set of final states.



TYPES OF AUTOMATA
• Non Deterministic Finite Automata: The Finite Automata is called

Non Deterministic Finite Automata if there are more than one
path for a specific input from current state to next state.

It can be represented as follows:

• A machine M = (Q,,,q0,F) Where ,

Q is finite set of states, which is non empty.

 is input alphabet, indicates input set.

 is transition function or mapping function. We can

determine the next state using this function.

Where :Q X  -> 2Q

q0 is an initial state and is in Q
 
 F is set of final states.



Automaton

temporary memory

Automaton

CPU

input memory

output memory

Program memory



Finite Automaton

InputString

Output StringFinite

Automaton



DFA

• DFA: Deterministic Finite Automaton.

• Every step of a computation follows in a unique way from the preceding step.

• When the machine is in a given state and reads the next input symbol, we know the next state will be – 
it is determined.

• We call this deterministic computation.



FORMAL DEFINITION OF A DFA

• A DFA is a five-tuple:

 M = (Q, Σ, δ, q0, F)

 Q A finite set of states

 Σ A finite input alphabet

 q0 The initial/starting state, q0 is in Q

 F A set of final/accepting states, which is a subset of Q

 δ A transition function, which is a total function from Q x Σ to Q

   δ: (Q x Σ) –> Q    δ is defined for any q in Q and s in Σ, and 

   δ(q,s) = q’    is equal to some state q’ in Q, could be q’=q

 Intuitively, δ(q,s) is the state entered by M after reading symbol s while in state q.



• The finite control can be described by a transition diagram or table:

   

 

          1        0       0        1        1 

   q0 q0 q1 q0 q0 q0     accpeted

• One state is final/accepting, all others are rejecting.

• The above DFA accepts those strings that contain an even number of 0’s, including 
the null string, over Sigma = {0,1}

 L = {all strings with zero or more 0’s}

• Note, the DFA must reject all other strings

q0
q1

0

0

1

1



 Q = {q0, q1}

 Σ = {0, 1}

 Start state is q0

 F = {q0}

 δ:

   0 1

   q0  q1  q0

   q1  q0  q1

q0
q1

0

0

1

1



NONDETERMINISTIC FINITE STATE
AUTOMATA (NFA)

• An NFA is a five-tuple:

 M = (Q, Σ, δ, q0, F)

 Q A finite set of states

 Σ A finite input alphabet

 q0 The initial/starting state, q0 is in Q

 F A set of final/accepting states, which is a subset of Q

 δ A transition function, which is a total function from Q x Σ to 2Q

  δ: (Q x Σ) –> 2Q :2Q is the power set of Q, the set of all subsets of Q δ(q,s) 
 :The set of all states p such that there is a transition

      labeled s from q to p

 

 δ(q,s) is a function from Q x S to 2Q (but not only to Q)



PROPERTIES OF NFA

• We already know DFA, so it would be sufficient to look into the 
differences of properties between the two.

• In NFA a state may have – 

• Zero or more exiting arrows for each alphabet symbol.

• Zero or more exiting arrows with the label ε.

• So we can see that, not all steps of a computation follows in a 
unique way from the preceding step. There can be multiple choices 
to move from one state to another with a symbol. That’s the reason 
it’s computation is called nondeterministic.

a1 a2 a3 a4

0,1

1 0, ε 1

0,1



RUNNING AN NFA

• If we encounter a state with multiple ways to proceed – 

• The machine splits into multiple copies of itself and follows all the possibilities in parallel.

• Each copy of the machine takes one of the possible ways to proceed and continues as before.

• If there are subsequent choices, the machine splits again.

• If a state with an ε symbol on an exiting arrow is encountered without reading any input, the machine 
splits into multiple copies, 

• one following each of the exiting ε-labeled arrows and 

• one staying in the current state.

• If the next input symbol doesn’t appear on any of the arrows exiting the state occupied by a copy of the 
machine, that copy of the machine dies, along with the branch of the computation associated with it.

• If any one of these copies of the machine is in an accept state at the end of the input, the NFA accepts the 
input strings.

• So, nondeterminism may be viewed as a kind of parallel computation wherein several processes can be 
running concurrently.

• If at least one of these processes accepts then the entire computation accepts.



EXAMPLE

Symbol read

0  -------------------------------------------------------------------------

1  ----------------------------------------------------------------

0  --------------------------------------------------------

1  ----------------------------------------------------

1  ------------------------------------------

0  -------------------------------------

a1 a2 a3 a4

0,1

1 0, ε 1

0,1

a1

a1

a2a1

a4

a1 a3

a3a1 a2

a4

a4

a2 a3a1

a1 a3

a4

a4

a3

a4 a4

010110
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EXAMPLE

• Let, the above NFA N1 = (Q1, Σ, 1, a1, F1). 

• Q1 = {a1, a2, a3, a4}.

• Σ = {0, 1}.

• 1 is given as – 
 |  0   1    

a1 | {a1}  {a1, a2}  
a2 | {a3}     {a3}
a3 |    {a4}    
a4 | {a4}  {a4}   

• a1 is the start state.

• F1 = {a4}.

a1 a2 a3 a4

0,1

1 0, ε 1

0,1



EXAMPLE

• Let, the above NFA N2 = (Q2, Σ, 2, b1, F2). 

• Q2 = {b1, b2, b3}.

• Σ = {0, 1}.

• 2 is given as – 
 |  0   1    

b1 |    {b2}  {b3}  
b2 | {b2, b3}  {b3}    
b3 | {b1}       

• b1 is the start state.

• F2 = {b1}.

b1

b2 b3

0

1

0,1

0

ε



EQUIVALENCE BETWEEN NFA & DFA

• Every NFA has an equivalent DFA.

• Let N = (Q, Σ, , q0, F) be the NFA recognizing some language A.

• Construct a DFA M = (Q, Σ,  , q0, F) which recognizes A.
• Q= P (Q), power set of Q. 

• Every state of M is a set of states of N.

• Let E(R) = {q | q can be reached from RQ by traveling along 0 or more  
arrows, including the members of R themselves}.

• For BQ and aΣ,  (B, a)={q Q | q E( (r, a)) for some r B}.

• Each state B may go to a set of states after reading any symbol a. So, 
we take the union of all these sets. 

• q0 = E({q0}). 

• M starts at the state corresponding to the collection containing all 
the possible states that can be reached from the start state of N 
along with the  arrows.

• F = {D Q| D contains an accept state of N}.



NFA-DFA EQUIVALENCE
Equivalent DFA M = (Q, Σ, , q0, F).
 Q = {b1,b2,b3} = P (Q) 

 Q = { , {b1}, {b2}, {b3}, {b1, b2}, {b1, b3}, 

                                                {b2, b3}, {b1, b2, b3}  }; 

 is given as – _  0   1 

          

 {b1}       {b2} 

 {b2}    {b2, b3}  {b3} 

 {b3}    {b1, b3}   

 {b1, b2}   {b2, b3}  {b2, b3}

 {b1, b3}   {b1, b3}  {b2} 

 {b2, b3}   {b1, b2, b3} {b3} 

 {b1, b2, b3}   {b1, b2, b3} {b2, b3} 

Σ = {0, 1}.

q0 = E({b1}) = {b1, b3} is the start state; 

F = {{b1}, {b1, b2}, {b1, b3}, {b1, b2, b3}}.

0

b1

b2 b3

1

0,1

0

ε

Let, the above NFA N2=(Q2, Σ, 2, b1, F2). 

Q2 = {b1,b2,b3}; Σ = {0,1}; 

b1 = start state; F2 = {b1}.

2 is given as – 

 0    1     .

b1    {b2} {b3}

b2  {b2, b3}   {b3}   

b3  {b1}      



NFA-DFA EQUIVALENCE Equivalent DFA M = (Q, Σ, , q0, F).
 Q = {b1,b2,b3} = P (Q) 

 Q = { , {b1}, {b2}, {b3}, {b1, b2}, {b1, b3}, 

                                                {b2, b3}, {b1, b2, b3}  }; 

 is given as – _  0   1 

          

 {b1}       {b2} 

 {b2}    {b2, b3}  {b3} 

 {b3}    {b1, b3}   

 {b1, b2}   {b2, b3}  {b2, b3}

 {b1, b3}   {b1, b3}  {b2} 

 {b2, b3}   {b1, b2, b3} {b3} 

 {b1, b2, b3}   {b1, b2, b3} {b2, b3} 

Σ = {0, 1}.

q0 = E({b1}) = {b1, b3} is the start state; 

F = {{b1}, {b1, b2}, {b1, b3}, {b1, b2, b3}}.

 

{b3}

{b1, b2}

{b1}

{b2}

{b1, b2, b3}

{b1, b3}

{b2, b3}

0, 1

0, 1

1

1

1

1

1

1

0

0

0

0

0

0

Remove the 

states with no 

incoming 

arrows.
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REGULAR EXPRESSION

• Regular expression describes languages.

• Regular expression can be build up using regular operations.

• Precedence order: * • 

• Example:

• (01)0* = ({0}{1})•{0}* = {0,1}•{0}*
A = {w  string w starts with a 0 or a 1 followed by zero or more 0’s}

• (01)* = ({0}{1})* = {0,1}*
A = {all possible string with 0s and/or 1s}.



FORMAL DEFINITION OF REGULAR EXPRESSION

• R is a regular expression if R is – 

• a for some a  , represents the language {a}.

• , represents the language {} containing a single string, namely, the empty 
string.

• , represents the empty language that doesn’t contain any string. L(*) = {}.

• (R1R2), where R1 and R2 are regular expressions,

• R   = R, but R   may not be equal to R.

• (R1•R2), where R1 and R2 are regular expressions, 

• R •  = R, but R •  may not be equal to R.

• (R1*), where R1 is a regular expressions,



EQUIVALENCE WITH FINITE AUTOMATA

• Let convert regular language R into an NFA considering the six cases in 
the formal definition of regular language.

• R = a, aΣ. Then L(R)={a}, and the NFA that recognizes L(R) is – 

• R = . Then L(R)={}, and the NFA that recognizes L(R) is –

• R = . Then L(R)= , and the NFA that recognizes L(R) is –

a



EQUIVALENCE WITH FINITE AUTOMATA

• R = R1R2. Then L(R)={R1,R2}, and the NFA that recognizes L(R) is –

• R = R1•R2. Then L(R)={R1R2}, and the NFA that recognizes L(R) is –

• R = R1*. Then L(R)={R1}*, and the NFA that recognizes L(R) is –





R2

R1





R1 R2

R1








CONVERTING A REGULAR EXPRESSION TO AN NFA

• Building an NFA from regular expression: (ab)*aba

a

b

a

b








aba
a  b  a








(ab)*aba



CONVERTING A DFA TO A REGULAR EXPRESSION

• This can be done in two parts. For this we introduce a new type of finite automata called generalized 
nondeterministic automaton, GNFA.

• First, we will convert a DFA to GNFA, and 

• then GNFA to regular expression.

• GNFA has the following special form – 

• Transition labels might be in regular expression form.

• The start state doesn’t have any incoming arrow 
from any other state.

• There is only one accept state, and it doesn’t 
have any outgoing arrow to any other state.

• Start state is never the same as accept state.

• There is only one outgoing arrow to any other 
state and to itself, except the start and accept 
states. We will consider  labeled outgoing arrows, 
if no transition exists between any two states.

qstart qaccept

ab*

a* (aa)*

 b*

aa

ab  ba

ab

b



CONVERTING A DFA TO GNFA

• Add a new start state with an  
arrow to the old start state.

• Add new accept state with   arrows 
from the old accept states.

• If any arrows have multiple labels, 
union the previous labels into one 
label.

• Add arrows with  label between 
states where there are no arrows. 
This won’t change the language as 
 label arrows can never be used. 

• Even we might ignore adding such 
arrows, as these are arrows which 
can be assumed to be there with no 
use.

1

2

a

b

a,bab

s

f 2











FORMAL DEFINITION OF GNFA

• A generalized nondeterministic finite automaton is a 5-tuple, 
(Q, Σ, , qstart, qaccept) where – 

• Q is the finite set of states,

• Σ is the input alphabet,

•  : (Q - {qstart})  (Q - {qaccept}) → R  is the transition function,

• qstart is the start state,

• qaccept is the accept state.

• A GNFA accepts a string w in Σ* if w = w1w2…wk, where each 
wi is in Σ* and a sequence of states q0, q1, …qk exists such that – 

• q0=qstart is the start state,

• qk=qaccept is the accept state, and

• For each i, we have wi L(Ri), where Ri = (qi-1, qi); 
i.e., Ri is the expression on the arrow from qi-1 to qi.



WEEK 6



CFL



SYMBOL

Symbol: Is a basic building block of Theory of Computation.

e.g.   a,b,….z(Latters)

    0,1,….9(Digit)



ALPHABET

Alphabet: Is a finite set of symbols.

Σ(Sigma)

e.g. Σ={a,b}

Σ={0,1}

Σ={0,1,….9}

Σ={a,b,c}

This all are finite set



STRING

String: Is a finite sequence of symbol.

Ɯ(String)

e.g. Ɯ={0,1}

Ɯ=0110

Ɯ=1010



LENGTH OF STRING

Length of String: |Ɯ|

Σ = {a,b}

Ɯ = ababba = 6

| Ɯ | = 6 (length is 6)



EMPTY STRING

Empty String: ε(Epsilon) or λ(Lambda)

Σ={0,1}

0 is a string over the Σ of length 1

10 is a string over the Σ of length 2

101 is a string over the Σ of length 3

e.g. ( ∅/{} = Empty Set )



LANGUAGE
Language: Is collection of strings. 

( It can be finite/ infinite )

e.g.   Σ = {a, b}

L1= Set of all strings over Σ of length 2

={aa,ab,ba,bb} Finite Set

L2= Set of all strings over Σ of length 3

={aaa,aab,aba,abb,baa,bab,bba,bbb} Finite Set

L3= Set of all strings over Σ where each string starts with ‘a’

={a,aa,ab,aaa,aba,aaaa,…..} Infinite set



POWER OF Σ

Σ={a,b}

Σ1 = Set of all strings over this Σ of length 1

={a,b}

Σ2 = Set of all strings over this Σ of length 2

={aa,ab,ba,bb}

Σ3 = Set of all strings over this Σ of length 3

={aaa,aab,aba,abb,baa,bab,bba,bbb}

Σ° = Set of all strings over this Σ of length 0

={ε}



Σ*

Σ*  = Set of all possible strings.

Σ* = Σ° U Σ1 U Σ2 U Σ3

={ε} U {a,b} U {aa,ab,ba,bb} ……

Previous,

L1 ⊆ Σ*

L2 ⊆ Σ*

L3 ⊆ Σ*

So, all language is subset of  Σ*

e.g. ⊆ = Subset



SET

Set: is a collection of objects.

S={a,b,c,h,d}

S={1,2,5,6}

Set

1. Empty set  S = ∅/{} 

2. Not Empty Set S ≠ ∅

Not Empty Set

1. Finite Set

2. Infinite Set



CFG



AMBIGUITY – PARSE TREE

• If a grammar generates the same string in several different ways, we say that the string 
is derived ambiguously in the grammar.

• If a grammar generates some string ambiguously we say that the grammar is 
ambiguous.

• Example: Grammar G, EXPR→EXPR+EXPR|EXPREXPR|(EXPR)|a

Two parse trees for the string a+aa in G 

EXPR

EXPREXPR

EXPREXPR

a aa+ 

EXPR

EXPR

EXPR

EXPR

EXPR

aaa +



AMBIGUITY - DERIVATION

• When we say that a grammar generates a string ambiguously, we mean that the 
string has two different parse trees, not two different derivations.

• A derivation of string w in a grammar G is a leftmost derivation if at every step 
the leftmost remaining variable is the one replaced.

• Then we can say, a string w is derived ambiguously in CFG G if it has two or more 
different leftmost derivations.

• Grammar G is ambiguous if it generates some string ambiguously.

• Some CFLs can only be generated by ambiguous grammars. Such languages are 
called inherently ambiguous.
Example: {0i1j2k | i=j or j=k}



CHOMSKY NORMAL FORM

• It is often convenient to have CFGs in simplified form. One such form is Chomsky 
normal form.

• A context free grammar is in Chomsky normal form if every rule is of the form

   A → BC

   A → a

where a is any terminal and A, B, and C are any variables – except that B and C 
may not be the start variable.

In addition S →  is permitted, where S is the start variable.



CONVERT ANY GRAMMAR G TO CHOMSKY NORMAL FORM

• Add a new start symbol S0 and the new rule S0→S, where S was the 
original start symbol.

• Eliminate all  rules of the form A → , where A is not the start 
symbol.

• Add rule R→uv for every rule of the form R→uAv, where u and v are 
strings of variables and terminals.

• Add such rules for every occurrence of A. for example, add R→uvAw, 
R→uAvw, R→uvw for the rule of the form R→uAvAw.

• Add R→ for the rule of the form R→A, unless we have previously removed 
the rule R→. 



CONVERT ANY GRAMMAR G TO CHOMSKY NORMAL FORM

• Eliminate all unit rules of the form A → B.

• Add rule A → u for the rule of the form B → u, unless this was a unit rule previously removed.

• Here u is a string of variables and terminals.

• Convert remaining rules into proper form, 
R→PQ and R→u.

• We replace each rule of the form A → u1u2…uk with the rules A→u1A1, A1→u2A2, 

A2→u3A3, … , Ak-2→uk-1uk.

• Here k  3 and each ui is a variable or terminal symbol, 
and Ai’s are new variables.

• If k  2, replace any terminal ui in the preceding rule(s) with the new variable Ui and the rule 
Ui→ui.

• The above procedure converts a Grammar to a Chomsky normal form. Next, we will go 
through an example.
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RECOGNIZING CONTEXT FREE LANGUAGES

• Regular Languages (RL) are recognized by the computational model Finite Automaton (FA), 
examples: DFA, NFA.

• A computational model is required that can recognize some Context Free Language (CFL).

• Based on the definition of the language to be recognized, additional memory with rule of 
access is required to construct such computational model.

• Push Down Automata (PDA) is the computational model that can recognize some Context Free 
Language (CFL).

• PDA contains additional memory with the LIFO (Last In First Out) access rule. That is, it 
maintains a stack where an element is pushed down the stack.

• Hence the name Push Down Automata.



PUSHDOWN AUTOMATA(NON-REGULAR LANGUAGES)

• Have an extra component called stack.

• Stack provides additional memory beyond the finite amount available in the control.

• Schematic of a pushdown automaton

• Control represents the states and transition function

• The arrow on the tape, containing the input string, represents the input head, pointing at the next input symbol to be 
read.

• The arrow on the stack points the top element.

• Writing symbol on the stack is referred to as pushing down the symbols.

• Removing a symbol is referred to as popping up.

• The top symbol of the stack can be read and removed at any time.



FORMAL DEFINITION

• A pushdown automaton is a 6-touple (Q, Σ, , , q0, F), where Q, Σ, , and F are all 
finite sets and

• Q is the set of states,

• Σ is the set of alphabet,

• Σ= Σ  {}

•  is the stack alphabet,

• =   {}

•  : Q  Σ   → P(Q  )

• Domain of the transition function is the current state, next input symbol read, and top symbol 
of the stack.

• Because of the nondeterminism, i.e. several legal next moves,  returns a set of members, each 
containing the next state and the next stack symbol.

• q0Q is the start state, and

• F  Q is the set of accept states



EXAMPLE: PDA

• L = {0n1n | n≥0}

• M = (Q, , , , q1, F), where

• Q = {q1, q2, q3, q4},

•  = {0, 1},

•  = {0, $},

• Test for an empty stack is done by initially placing a special symbol $ on the stack. If it 
ever sees the sign $ again, it knows that the end of stack effectively is empty.

• F = {q1, q4},

•  is given in the following table, wherein blank entries signify .

Input: 0 1 

Stack: 0 $  0 $  0 $ 

q1 {(q2, $)}

q2 {(q2, 0)} {(q3, )}

q3 {(q3, )} {(q4, )}

q4



EXAMPLE - STATE DIAGRAM

• We write “a, b → c” to signify that when the machine is reading an a 
from the input it may replace the symbol b on the top of the stack with a c.

• State diagram for the PDA M that recognizes {0n1n | n ≥ 0}

q1

q4 q3

q2

,  → $
0,  → 0

1, 0 → 

, $ → 

1, 0 → 

Stack

$

0

0

0

Input 0 0 0 1 1 1



TRANSITION TABLE – STATE DIAGRAM

  is given in the following table, wherein blank entries signify .

q4 q3

0,  → 0

1, 0 → 

1, 0 → 

q1 q2

,  → $

, $ → 
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FOUNDATIONS

•The theory of computation and the 
practical application it made possible — the 
computer — was developed by an 
Englishman called Alan Turing.

79



THE TURING MACHINE

•Turing’s machine — which came to be 
called the Turing machine — was this:

•(1) A tape of infinite length

•(2) Finitely many squares of 
the tape have a single 
symbol from a finite 
language. 

•(3) Someone (or something) 
that can read the squares 
and write in them.

• (4) At any time, the machine is in 
one of a finite number of internal 
states.

• (5) The machine has instructions 
that determine what it does given 
its internal state and the symbol it 
encounters on the tape. It can

•  change its internal state;

•  change the symbol on the 
square;

•  move forward;

•  move backward;

•  halt (i.e. stop). 80



TURING MACHINES

81



THE LANGUAGE HIERARCHY

82

*a
Regular Languages

Context-Free Languages

nnba Rww

nnn cba ww?

**ba

?
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*a

Regular Languages

Context-Free Languages

nnba Rww

nnn cba ww

**ba

Languages accepted by
Turing Machines



A TURING MACHINE
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............

Tape

Read-Write head

Control Unit 
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............

Read-Write head

The head at each time step:

                1. Reads a symbol
                2. Writes a symbol
                3. Moves Left or Right
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............

Example:

Time 0

............

Time 1

1. Reads

2. Writes 

a a cb

a b k c

a

k
3. Moves Left
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............

Time 1

a b k c

............

Time 2

a k cf

1. Reads

2. Writes 

b

f
3. Moves Right



THE INPUT STRING

88

............

   

Blank symbol

head

a b ca

Head starts at the leftmost position
of the input string

Input string
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............

   

Blank symbol

head

a b ca

Input string

Remark:  the input string is never empty



STATES & TRANSITIONS

90

1q 2qLba ,→

Read
Write

Move Left

1q 2qRba ,→

Move Right
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Example:

1q 2qRba ,→

............

   a b ca

Time 1

1q
current state
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............

   a b ca

Time 1

1q 2qRba ,→

............

   a b cb

Time 2

1q

2q



HALTING

97

The machine halts if there are
no possible transitions to follow 
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Example:

............

   a b ca

1q

1q

2qRba ,→

3qLdb ,→

No possible transition

HALT!!!



FINAL STATES

99

1q 2q Allowed

1q 2q Not Allowed

• Final states have no outgoing transitions

• In a final state the machine halts



ACCEPTANCE

100

Accept Input If machine halts 
in a final state 

Reject Input

If machine  halts 
 in a non-final state
             or
 If machine enters 
 an infinite loop 



TURING MACHINE EXAMPLE

101

A Turing machine that accepts the language:

*aa

0q

Raa ,→

L,→
1q
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   aaTime 0

0q

a

0q

Raa ,→

L,→
1q
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   aaTime 1

0q

a

0q

Raa ,→

L,→
1q
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   aaTime 2

0q

a

0q

Raa ,→

L,→
1q
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   aaTime 3

0q

a

0q

Raa ,→

L,→
1q
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   aaTime 4

1q

a

0q

Raa ,→

L,→
1q

Halt & Accept
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Rejection Example

0q

Raa ,→

L,→
1q

   baTime 0

0q

a
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0q

Raa ,→

L,→
1q

   baTime 1

0q

a

No possible Transition

Halt & Reject



INFINITE LOOP EXAMPLE

109

0q

Raa ,→

L,→
1q

Lbb ,→
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   baTime 0

0q

a

0q

Raa ,→

L,→
1q

Lbb ,→
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   baTime 1

0q

a

0q

Raa ,→

L,→
1q

Lbb ,→
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   baTime 2

0q

a

0q

Raa ,→

L,→
1q

Lbb ,→
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   baTime 2

0q

a

   baTime 3

0q

a

   baTime 4

0q

a

   baTime 5

0q

a

In
fin

ite lo
o

p
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Because of the infinite loop:

•The final state cannot be reached

•The machine never halts 

•The input is not accepted



ANOTHER TURING MACHINE EXAMPLE

115

Turing machine for the language

}{ nnba

0q 1q 2q3q
Rxa ,→

Raa ,→

Ryy ,→

Lyb ,→

Laa ,→

Lyy ,→

Rxx ,→

Ryy ,→

Ryy ,→
4q

L,→
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0q 1q 2q3q
Rxa ,→

Raa ,→

Ryy ,→

Lyb ,→

Laa ,→

Lyy ,→

Rxx ,→

Ryy ,→

Ryy ,→
4q

L,→

 ba

0q

a bTime 0 
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0q 1q 2q3q
Rxa ,→

Raa ,→

Ryy ,→

Lyb ,→

Laa ,→

Lyy ,→

Rxx ,→

Ryy ,→

Ryy ,→
4q

L,→

 bx

1q

a b Time 1
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0q 1q 2q3q
Rxa ,→

Raa ,→

Ryy ,→

Lyb ,→

Laa ,→

Lyy ,→

Rxx ,→

Ryy ,→

Ryy ,→
4q

L,→

 bx

1q

a b Time 2
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0q 1q 2q3q
Rxa ,→

Raa ,→

Ryy ,→

Lyb ,→

Laa ,→

Lyy ,→

Rxx ,→

Ryy ,→

Ryy ,→
4q

L,→

 yx

2q

a b Time 3
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0q 1q 2q3q
Rxa ,→

Raa ,→

Ryy ,→

Lyb ,→

Laa ,→

Lyy ,→

Rxx ,→

Ryy ,→

Ryy ,→
4q

L,→

 yx

2q

a b Time 4
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0q 1q 2q3q
Rxa ,→

Raa ,→

Ryy ,→

Lyb ,→

Laa ,→

Lyy ,→

Rxx ,→

Ryy ,→

Ryy ,→
4q

L,→

 yx

0q

a b Time 5
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0q 1q 2q3q
Rxa ,→

Raa ,→

Ryy ,→

Lyb ,→

Laa ,→

Lyy ,→

Rxx ,→

Ryy ,→

Ryy ,→
4q

L,→

 yx

1q

x b Time 6
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0q 1q 2q3q
Rxa ,→

Raa ,→

Ryy ,→

Lyb ,→

Laa ,→

Lyy ,→

Rxx ,→

Ryy ,→

Ryy ,→
4q

L,→

 yx

1q

x b Time 7
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0q 1q 2q3q
Rxa ,→

Raa ,→

Ryy ,→

Lyb ,→

Laa ,→

Lyy ,→

Rxx ,→

Ryy ,→

Ryy ,→
4q

L,→

 yx x y

2q

Time 8
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0q 1q 2q3q
Rxa ,→

Raa ,→

Ryy ,→

Lyb ,→

Laa ,→

Lyy ,→

Rxx ,→

Ryy ,→

Ryy ,→
4q

L,→

 yx x y

2q

Time 9
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0q 1q 2q3q
Rxa ,→

Raa ,→

Ryy ,→

Lyb ,→

Laa ,→

Lyy ,→

Rxx ,→

Ryy ,→

Ryy ,→
4q

L,→

 yx

0q

x y Time 10
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0q 1q 2q3q
Rxa ,→

Raa ,→

Ryy ,→

Lyb ,→

Laa ,→

Lyy ,→

Rxx ,→

Ryy ,→

Ryy ,→
4q

L,→

 yx

3q

x y Time 11
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0q 1q 2q3q
Rxa ,→

Raa ,→

Ryy ,→

Lyb ,→

Laa ,→

Lyy ,→

Rxx ,→

Ryy ,→

Ryy ,→
4q

L,→

 yx

3q

x y Time 12
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0q 1q 2q3q
Rxa ,→

Raa ,→

Ryy ,→

Lyb ,→

Laa ,→

Lyy ,→

Rxx ,→

Ryy ,→

Ryy ,→
4q

L,→

 yx

4q

x y 

Halt & Accept

Time 13
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Revision and Recap and Practical 
Applications of Theory



1. Finite Automata and Pattern Matching
Finite automata, both deterministic (DFA) and non-deterministic (NFA), are widely used in pattern matching, which 
powers tools like:
•Text editors: Identifying specific patterns in text.
•Spam filters: Detecting harmful phrases or URLs in emails.
•Programming languages: Lexical analyzers in compilers use finite automata to recognize tokens.

2. Regular Expressions in Search and Validation
Regular languages are implemented as regular expressions, critical for tasks like:
•Web development: Validating email addresses, phone numbers, and user input in forms.
•Data extraction: Extracting structured information, such as dates or IDs, from unstructured data.



3. Context-Free Grammars in Language Processing
Context-free grammars (CFGs) form the backbone of parsers, which analyze hierarchical structures:
•Programming: Compilers rely on CFGs to parse source code and ensure it follows language syntax.
•Chatbots: CFGs help in processing user inputs grammatically for better responses.

4. Turing Machines and Universal Computation
Turing machines model what computers can and cannot do, guiding the development of:
•Algorithms: Understanding the limits of computation helps optimize solutions.
•Cryptography: Encoding and decoding systems often rely on Turing-complete algorithms.



WEEK 10

Mid Term Examination



WEEK 11



COMPUTABILITY THEORY

• A mathematical problem is computable if it can be solved in principle by a computing device. 

• In the 1930’s, well before there were computers,  Gödel, Turing, and Church showed that not 
all mathematical problems are computable in a computing device.

• There is an extensive study and classification of 

• Which mathematical problems are computable, and which are not. 

• Computable problems into computational complexity classes according to how much 
computation is needed to answer that instance, as a function of the size of the problem 
instance.

• Some common synonyms for “computable” are “solvable”, “decidable”, and “recursive”.



COMPUTABILITY HISTORY

• David Hilbert’s Tenth Problem in 1900 states that a given 
Diophantine equation (polynomial equation with integral coefficients) is 
solvable in rational integers using a finite number of operations.

• Hilbert came up with the term “entscheidungsproblem” (decision problems) 
which is the pre-version to the NP-problem that we currently know as SAT 
(satisfiability problem) in computing science, in 1928.

• In 1930s, various mathematicians – Alonzo Church, Kurt Gödel, Stephen 
Kleene, Markov, Emil Post, and Alan Turing, independently defined what it 
means to be computable. 

• They defined Lambda calculus, Recursive functions, Formal systems, Markov 
algorithms, Post (abstract) machine, and Turing (abstract) machine models, 
which are equivalent to each other.

• In 1930 & 1931, Mr. Gödel gave his Completeness and Incompleteness 
theorem. A few years later, Church and Turing independently proved that 
the entscheidungsproblem is unsolvable.



DEFINITION: TURING MACHINE

• A Turing Machine is a 7-tuple 
T = (Q, Σ, Γ, , q0, qA, qR), where:

• Q is a finite set of states

• Σ is the input alphabet, where   Σ

• Γ is the tape alphabet, where   Γ and Σ  Γ

•  : Q  Γ → Q  Γ  {L,R}

• q0  Q is the start state

• qA  Q is the accept state

• qR  Q is the reject state, and qR  qA



EMPTINESS TESTING

• EDFA = {A | A is a DFA with L(A) =  }; This language concerns the behavior of the 
DFA A on all possible strings

• Proof for DFA-Emptiness:

• Algorithm for EDFA on input A=(Q,,,q0,F):

• If A is not proper DFA then “reject”

• Make set S with initially S={q0}

• Repeat |Q| times:

• If S has an element in F then “reject” 

• Otherwise, add to set S, all the elements that can be -reached from S. i.e., “If qiS and u with (qi,u)=qj, then qj added 
to S”.

• If final SF =  then “accept”



DFA-EQUIVALENCE

• A problem that deals with two DFAs:
 EQDFA = {A,B | L(A) = L(B) }

• Theorem: EQDFA is TM-decidable.

• Proof: Look at the symmetric difference between
the two languages:

• Note: “L(A)=L(B)” is equivalent with an empty
symmetric difference between L(A) and L(B).
This difference is expressed by standard DFA
transformations: union, intersection, complement.

))()(())()(( BLALBLAL 



DFA-EQUIVALENCE

• Proof Theorem for EQDFA = {A,B | L(A) = L(B) }

• Algorithm on given A,B : 

• If A or B are not proper DFA then “reject”

• Construct a third DFA C that accepts the language

• Decide with the TM of the previous theorem
whether or not CEDFA

• If CEDFA then “accept”;
If CEDFA then “reject”

))()(())()(( BLALBLAL 



• Similarly we can decide on the following languages:

• ADFA = { (B,w) | B is a DFA that accepts string w }

• Proof Idea: Simulate B on w.
• ANFA = { (B,w) | B is an NFA that accepts string w }

• Proof Idea: 

• Transform B into DFA C. 

• Simulate C on w.



DECIDABLE AND UNDECIDABLE PROBLEMS IN THEORY 
OF COMPUTATION

• In the Theory of Computation, problems are categorized as decidable or undecidable. Decidable 
problems have algorithms that provide correct solutions in finite time, while undecidable problems lack 
algorithms that can solve them for all inputs.



DECIDABLE

• A problem is decidable if there exists an algorithm that always provides a correct answer. For example, 
finding all prime numbers between 1000 and 2000 can be solved using a straightforward algorithm. In 
terms of a Turing machine, a problem is decidable if the machine halts on every input with a "yes" or 
"no" answer, making it Turing Decidable.



SEMI DECIDABLE PROBLEMS

• Semi-decidable problems are those for which a Turing machine halts on the input accepted by it but it 
can either halt or loop forever on the input which the Turing Machine rejects. Such problems are 
termed as Turing Recognizable problems.



UNDECIDABLE PROBLEMS

• Undecidable problems are those for which no algorithm can provide a correct answer in finite time. 
While they may be partially decidable, there will always be cases where a Turing machine enters an 
infinite loop without producing a result. For example, Fermat's Theorem is an undecidable problem 
because a Turing machine attempting to find a contradiction for the equation an+bn=cna^n + b^n = 
c^nan+bn=cn (where n>2n > 2n>2) might run indefinitely without reaching a conclusion.



COMPARISON: DECIDABLE VS. 
UNDECIDABLE PROBLEMS

Aspect Decidable Problems Undecidable Problems

Definition
Problems that can be solved by an algorithm that always gives a correct answer in 

a finite time.
Problems where no algorithm can give a solution for all possible cases.

Solvability Always solvable using a step-by-step process (algorithm). Cannot be solved for all inputs using a single algorithm.

Algorithm
There is an algorithm that works for every input and always finishes with an 

answer.
No algorithm can solve the problem for every input.

Halting The algorithm stops (halts) and gives an answer for every input. The algorithm might never stop for some inputs, or no algorithm exists.

Examples
Problems like checking if a number is even or odd, or if a string belongs to a regular 

language (like finding a match in a search).

Examples include the Halting Problem, where you can’t always tell if a 

program will finish running or run forever.

Decision Procedure There’s a clear method to always reach a correct conclusion. No guaranteed method exists to solve the problem in every case.

Complexity May be complex but can always be computed. Too complex to compute in general, and no universal solution exists.

Applications
Useful in practical computing tasks like compiling code or searching for text 

patterns.

Helps understand the limits of what computers can do, showing what 

problems are beyond computation.



WEEK 12



◆ Complexity Theory

• Easy problems (sort a million items in a few seconds)

• Hard problems (schedule a thousand classes in a hundred years)

• What makes some problems hard and others easy (computationally) and how do 

we make hard problems easier?

• Complexity Theory addresses these questions



Computability Theory

• In the first half of the 20th century, mathematicians such as Kurt Gödel, Alan Turing, and

Alonzo Church discovered that certain basic problems cannot be solved by computers

➢  determine whether a mathematical statement is true or false

• Complexity Theory: classify problems as easy ones and hard ones

• Computability Theory: classify problems are solvable and not solvable



AUTOMATA THEORY

• Deals with the definitions and properties of mathematical models 
of computation

• Finite automaton (used in text processing, compilers, hardware 
design)

• Context-free grammar (used in programming languages and 
artificial intelligence)



COMPLEXITY ANALYSIS

Why do we write programs?

➢ to perform some specific tasks

➢ to solve some specific problems

➢ We will focus on “solving problems”

➢ What is a “problem”?

➢ We can view a problem as a mapping of “inputs” to “outputs



COMPLEXITY CLASSES
       P AND NP



RECAP: DECISION PROBLEMS

• In the initial part of this course, we’ll focus primarily on decision problems. 

• Decision problems can be naturally identified with boolean functions, i.e. functions 
from {0,1}* to {0,1}.

• Boolean functions can be naturally identified with sets of {0,1} strings, also called 
languages.



RECAP: DECISION PROBLEMS

Decision problems       Boolean functions       Languages

• Definition. We say a TM M decides a language L ⊆ {0,1}* if M computes fL, where fL(x) = 
1 if and only if x ∈ L.



RECAP: COMPLEXITY CLASS P

• Let T:  N     N be some function.

• Definition:  A language L is in DTIME(T(n)) if there’s a TM that decides L in time 
O(T(n)).

• Defintion: Class P = ∪ DTIME (nc).

c > 0

Deterministic polynomial-time



COMPLEXITY CLASS P :  EXAMPLES

• Cycle detection

• Solvabililty of a system of linear equations

• Perfect matching

• Primality testing  (AKS test 2002)

➢  Check if a number is prime



POLYNOMIAL TIME TURING MACHINES

• Definition.  A TM M is a polynimial time TM if there’s a polynomial function q: N N such that for every 
input x ∈ {0,1}*, M halts within q(|x|) steps.

Polynomial function.    q(n) = nc for some constant c



CLASS (FUNCTIONAL) P

• What if a problem is not a decision problem? Like the task of adding two integers.



CLASS (FUNCTIONAL) P

• What if a problem is not a decision problem? Like the task of adding two integers.

• One way is to focus on the i-th bit of the output and make it a decision problem. 

                          (Is the i-th bit, on input x, 1?)



CLASS (FUNCTIONAL) P

• What if a problem is not a decision problem? Like the task of adding two integers.

• One way is to focus on the i-th bit of the output and make it a decision problem. 

• Alternatively, we define a class called functional P. 



CLASS (FUNCTIONAL) P

• What if a problem is not a decision problem? Like the task of adding two integers.

• One way is to focus on the i-th bit of the output and make it a decision problem. 

• We say that a problem or a function f: {0,1}*     {0,1}* is in FP (functional P) if 
there’s a polynomial-time TM that computes f.

                       



COMPLEXITY CLASS FP :  EXAMPLES

• Greatest Common Divisor (Euclid ~300 BC)

➢ Given two integers a and b, find their gcd.  



COMPLEXITY CLASS FP :  EXAMPLES

• Greatest Common Divisor

• Counting paths in a DAG (homework)

➢  Find the number of paths between two vertices in a directed 

     acyclic graph.



COMPLEXITY CLASS FP :  EXAMPLES

• Greatest Common Divisor

• Counting paths in a DAG

• Maximum matching (Edmonds 1965)

➢  Find a maximum matching in a given graph



COMPLEXITY CLASS NP

• Solving a problem is generally harder than verifying a given solution to the 
problem. 



COMPLEXITY CLASS NP

• Solving a problem is generally harder than verifying a given solution to the 
problem. 

• Class NP captures the set of decision problems whose solutions are efficiently 
verifiable. 

 



COMPLEXITY CLASS NP

• Solving a problem is generally harder than verifying a given solution to the 
problem. 

• Class NP captures the set of decision problems whose solutions are efficiently 
verifiable. 

 
Nondeterministic polynomial-time



COMPLEXITY CLASS NP

• Definition. A language L ⊆ {0,1}* is in NP if there’s a polynomial function p: N N
and a polynomial time TM M (called the verifier) such that for every x,

       x ∈ L             ∃u  ∈ {0,1}p(|x|)    s.t.  M(x, u) = 1



COMPLEXITY CLASS NP

• Definition. A language L ⊆ {0,1}* is in NP if there’s a polynomial 
function p: N N and a polynomial time TM M (called the verifier) 
such that for every x,

       x ∈ L             ∃u  ∈ {0,1}p(|x|)    s.t.  M(x, u) = 1

u is called a certificate or witness 

for x (w.r.t L and M) if x ∈ L



COMPLEXITY CLASS NP

• Definition. A language L ⊆ {0,1}* is in NP if there’s a polynomial function p: N N
and a polynomial time TM M (called the verifier) such that for every x,

       x ∈ L             ∃u  ∈ {0,1}p(|x|)    s.t.  M(x, u) = 1

• It follows that verifier M cannot be fooled! 



COMPLEXITY CLASS NP

• Definition. A language L ⊆ {0,1}* is in NP if there’s a polynomial function p: N N
and a polynomial time TM M (called the verifier) such that for every x,

       x ∈ L             ∃u  ∈ {0,1}p(|x|)    s.t.  M(x, u) = 1

• Class NP contains those problems (languages) which have such efficient verifiers.



CLASS NP :  EXAMPLES

• Vertex cover

➢ Given a graph G and an integer k, check if G has a vertex cover of size k.



CLASS NP :  EXAMPLES

• Vertex cover

• 0/1 integer programming

➢ Given a system of linear (in)equalities with integer coefficients, check if there’s a 0-1 
assignment to the variables that satisfy all the (in)equalities. 



CLASS NP :  EXAMPLES

• Vertex cover

• 0/1 integer programming

• Integer factoring

➢ Given 2 numbers n and U, check if n has a nontrivial factor less than equal to U. 



CLASS NP :  EXAMPLES

• Vertex cover

• 0/1 integer programming

• Integer factoring

• Graph isomorphism

➢ Given 2 graphs, check if they are isomorphic



POLYNOMIAL TIME REDUCTION

• Definition. We say a language L1 ⊆ {0,1}* is polynomial time (Karp) reducible to a 
language L2 ⊆ {0,1}* if there’s a polynomial time computable function f s.t. 

                 x∈L1          f(x)∈L2

L1

L1

L2

L2

f(L1)

f(L1)



POLYNOMIAL TIME REDUCTION

• Definition. We say a language L1 ⊆ {0,1}* is polynomial time (Karp) reducible to a 
language L2 ⊆ {0,1}* if there’s a polynomial time computable function f s.t. 

                 x∈L1          f(x)∈L2

• Notation.    L1  ≤p  L2

• Observe.  If L1  ≤p  L2  and L2  ≤p  L3 then L1  ≤p  L3 . 

  



NP-COMPLETENESS

• Definition.  A language L’ is NP-hard if for every L in NP, L  ≤p  L’.  Further,  L’ is NP-
complete if L’ is in NP and is NP-hard.

• Observe.  If L’ is NP-hard and L’ is in P then P = NP.  If L’ is NP-complete then L’ in P if 
and only if P = NP. 

  

   

P

NPC

NP

Hardest problems inside NP in the sense 
that if one NPC problem is in P then all 
problems in NP is in P.



NP-COMPLETENESS

• Definition.  A language L’ is NP-hard if for every L in NP, L  ≤p  L’.  Further,  L’ is NP-
complete if L’ is in NP and is NP-hard.

• Observe.  If L’ is NP-hard and L’ is in P then P = NP.  If L’ is NP-complete then L’ in P if 
and only if P = NP. 

• Exercise. Let L1 ⊆ {0,1}* be any language and L2 be a language in NP.  If L1  ≤p  L2 then 
L1 is also in NP.



CLASS P AND NP :  EXAMPLES

• Vertex cover  (NP-complete)

• 0/1 integer programming  (NP-complete)

• Integer factoring  (unlikely to be NP-complete)

• Graph isomorphism  (Quasi-P)

• Primality testing  (P)

• Linear programming  (P)



A NATURAL NP-COMPLETE PROBLEM

• Definition. A boolean formula on variables x1, …, xn consists of AND, OR and NOT 
operations. 

             e.g.  ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2 ) 

• Definition.  A boolean formula ϕ is satisfiable if there’s a {0,1}-assignment to its 
variables that makes ϕ evaluate to 1.



A NATURAL NP-COMPLETE PROBLEM

• Definition. A boolean formula is in Conjunctive Normal Form (CNF) if it is an 
AND of OR of literals. 

             e.g.  ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2 ) 

clauses



A NATURAL NP-COMPLETE PROBLEM

• Definition. A boolean formula is in Conjunctive 
Normal Form (CNF) if it is an AND of OR of 
literals. 

             e.g.  ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2 ) 

literals



A NATURAL NP-COMPLETE PROBLEM

• Definition. A boolean formula is in Conjunctive Normal Form (CNF) if it is an AND of OR 
of literals. 

             e.g.  ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2 ) 

• Definition. Let SAT be the language consisting of all satisfiable CNF formulae. 



A NATURAL NP-COMPLETE PROBLEM

• Definition. A boolean formula is in Conjunctive Normal Form (CNF) if it is an AND of OR 
of literals. 

             e.g.  ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2 ) 

• Definition. Let SAT be the language consisting of all satisfiable CNF formulae. 

• Theorem. (Cook-Levin) SAT is NP-complete.



A NATURAL NP-COMPLETE PROBLEM

• Definition. A boolean formula is in Conjunctive Normal Form (CNF) if it is an AND of OR 
of literals. 

             e.g.  ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2 ) 

• Definition. Let SAT be the language consisting of all satisfiable CNF formulae. 

• Theorem. (Cook-Levin) SAT is NP-complete.

                               Easy to see that SAT is in NP.  

                                    Need to show that SAT is NP-hard.



WEEK 13



NFA, - NFA - DFA EQUIVALENCE



WHAT IS AN NFA

• An NFA is an automaton that its states might 
have none, one or more outgoing arrows 
under a specific symbol.

0,1

• From q0 with 1 we can be either in q0 or q1.

• No outgoing arrows under 0 or 1 from q1.



WHAT IS AN NFA

• An NFA is an automaton that its states might 

have none, one or more outgoing arrows 
under a specific symbol.

1

• A DFA is by definition an NFA (each state has 
exactly one outgoing arrow under each 
symbol).



WHAT IS AN
NFA

• An NFA, is an NFA that might have c-moves. In
an c-move we can transport from one state to
the other without having any symbols.

• From q0 with 1 we can be either in q0 or q2.



WHAT IS AN
NFA

• An NFA, is an NFA that might have c-moves. In
an c-move we can transport from one state to
the other without having any symbols.

• An NFA is by definition an NFA, (but with no c-
moves).



NFA NFA, COMPUTATION

• An Non-Deterministic FA can have choices. If 
there are two possible transitions under a 
specific symbol, it can choose either of them 
and follow it.

• Given some input string, there might be more 
than one paths to follow. Some of them might 
fail but, in order to accept, it suffices to find 
one that succeeds.



NFA—NFA, COMPUTATION

An Non-Deterministic Finite Automaton 
accepts an input string s if there exists a path 
following transitions under the symbols of s 
consecutively, that leads to an accepting state.



EXAMPLE

• This automaton accepts the string 1110 because there is a path under 1110 that

takes us to an accepting state

• (the path q04 1 q 0 4 1 q 0 4 1 q 0 4 0 q1).



EXAMPLE

• This automaton accepts the string 1110 because there is a path under 1110 that

takes us to an accepting state

• (the path q04 1 q 0 4 1 q 0 4 1 q 0 4 0 q1).



EXAMPLE

• This automaton accepts the string 1110 because there is a path under 1110 that

takes us to an accepting state

• (the path q04 1 q 0 4 1 q 0 4 1 q 0 4 0 q1).



EXAMPLE

• This automaton accepts the string 1110 because there is a path under 1110 that

takes us to an accepting state

• (the path q04 1 q 0 4 1 q 0 4 1 q 0 4 0 q1).



EXAMPLE

• This automaton accepts the string 1110 because there is a path under 1110 that

takes us to an accepting state

• (the path q04 1 q 0 4 1 q 0 4 1 q 0 4 0 q1).



EXAMPLE

• And that is so despite the fact that there are 
some other paths under 1110 which do not 
lead to an accepting state

(for example the path q 0 4 1 q 0 4 1 q0).



EXAMPLE

• And that is so despite the fact that there are 
some other paths under 1110 which do not 
lead to an accepting state

(for example the path q 0 4 1 q 0 4 1 qg).



EXAMPLE

• And that is so despite the fact that there are 
some other paths under 1110 which do not 
lead to an accepting state

(for example the path q 0 4 1 q 0 4 1 q0).



EXAMPLE

• However it doesn't accept the string 00 

because there are no paths under 00 to take 
us to q1.

(only possible path is q 0 4 0 q 1 4 0 q0).



EXAMPLE

• However it doesn't accept the string 00 
because there are no paths under 00 to take 
us to q1.

(only possible path is q 4 0 q 1 4 0 q0).



EXAMPLE

• However it doesn't accept the string 00 
because there are no paths under 00 to take 
us to q1.

(only possible path is q 4 0 q 1 4 0 q0).



NFA - NFAC ACCEPTANCE

• The language that a Non—Deterministic FA
recognizes is the set of strings which accepts.

• To see whether a string can get accepted or 
not, it suffices to find the set of all possible 
states in which the automaton can be 
following all possible transitions suggested by 
this string as an input and see if a final state is 
contained in this set.



NFA ACCEPTANCE

• Whenever an arrow is followed, there is a set 
of possible following states that the NFA can 
be. This set of states is a subset of Q.

• For example with input being 0010 I have the 
following sequence of sets of states:

1
0



IS NFA MORE POWERFUL THAN
DFA?

• Designing an NFA is sometimes mush easier 
than constructing a DFA. For example, the 
following NFA recognizes the language of all 
binary strings that end with 010.

0,1

q2



NFA DFA

EQUIVALENCE

• It is obvious that a DFA is also an NFA.

• Somebody would expect the NFA to be more

powerful. We will see that this is not the case!



NFA—DFA EQUIVALENCE

• An NFA might have more than one or no 
transitions under some symbol of the 
alphabet.



NFA DFA EQUIVALENCE

• An NFA might have more than one or no 
transitions under some symbol of the 
alphabet.

• I can simulate all possible transitions in one 
new state. This state should contain all the 
reachable states under the same symbol.

a q’

a q”



NFA—DFA EQUIVALENCE

• The new DFA can possibly contain one state
for each subset of states of the NFA.

• Since all the subsets of Q are 2! | total, this
should be a finite (6 2!D) number of subsets!

• The NFA accepts if there is at least one path 
that takes us to an accepting state. Thus, each 
subset-state of the DFA containing an 
accepting state of the NFA should be an 
accepting one.



NFA—2DFA

Suppose that you want to find an equivalent 
DFA for an NFA . The algorithm is the 
following:

• Starting from the start state and for each 
symbol in the alphabet, find the subset of 
states that can be reached after following this 

symbol and create a new state for each 
subset.



NFA—2DFA

Suppose that you want to find an equivalent 
DFA for an NFA . The algorithm is the 
following:

• Repeat the same process for every new
subset-state that you are creating...



NFA—2DFA

Suppose that you want to find an equivalent 
DFA for an NFA . The algorithm is the 
following:

• Repeat the same process for every new
subset-state that you are creating...

• .. until no new subset-state can be created.



0

NFA—DFA EQUIVALENCE (EXAMPLE)

To find an equivalent DFA to the NFA of the 
figure we complete the following table:

q lq I
Isib Iq q2I

Iq . q1I

»
I k qI I k q i2l t*‹ all
\q q2t Incl (Bo all

low q q2l Iq q q2\ lq all

0,1



NFA DFA EQUIVALENCE(EXAMPLE)

So the DFA is:

ïq q2ï

ïq q q2ï ïq q ï



NFA,—NFA EQUIVALENCE

• An NFA, is an NFA which might have c-moves.

• Again, somebody would think that this 
attribute can make NFA, more powerful than 
NFA. This is not the case since I can get rid of 
the c-moves.



NFA, NFA EQUIVALENCE

• Suppose that I have an c-move like the one
shown in the figure. Since an c-move is like
teleporting from q1 to q2, I can remove the
c-move and add transitions from q directly
to every neighbor of q2.

0
q3

c 0
‹z ‹z4

q

0 q 0

0 0
q ‹z4 q 2

1 q



NFA,—NFA EQUIVALENCE

• If an c-move takes me from q1to q2 and q2 is 
an accepting state, then, when removing the 
c-move, I should convert q1 to an accepting 
state.

0



EXAMPLE

1

0,c



EXAMPLE

1

0,c



EXAMPLE

1

0,c



EXAMPLE

1

0,c

0,c



EXAMPLE

1

0,s

0,c



EXAMPLE

0,1

1

0,c



EXAMPLE

0,1

1

0,e



EXAMPLE

0,1

1



EXAMPLE

0,1

1



WEEK 14



REVISION AND RECAP

Decidability and 

Computability

Complexity Theory

Equivalence of NFA & 

DFA (Revisited)



WEEK 15



FEEDBACK AND FUTURE DIRECTIONS ABOUT FINAL TERM

➢ Decidability and Computability: Understanding what problems computers can and cannot solve.

➢ Complexity Theory: Measuring the efficiency of algorithms and identifying their limitations.

➢ Equivalence of NFA & DFA: Core principles of automata theory with practical applications. 



Decidability and Computability

• Key Concept: Decidable problems have algorithms that always provide a solution (e.g., checking if a number 
is prime).
Undecidable problems, like the Halting Problem, lack such universal solutions.

• Real-World Impact: These ideas guide the boundaries of software and hardware capabilities.



Complexity Theory

• Key Concept: Complexity theory helps us classify problems based on resources like time and memory.

• P vs. NP: A central unsolved question—can every problem that’s easy to verify also be solved efficiently?

• Real-World Impact: Optimizing algorithms for tasks like data analysis, cryptography, and scheduling.



Equivalence of NFA & DFA

• Key Concept: NFAs and DFAs are equally powerful in recognizing regular languages, but differ in complexity.

• Real-World Impact: Used in building compilers, regex engines, and pattern-matching systems.



WEEK 16



FINAL DOCUMENTATION/PRESENTATION

Showcase application of Theory of Computation concepts in 
a Documentation or Presentation.



WEEK 17

Final Examination revision and recap covering the entire course content
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