
THEORY OF COMPUTATION

MD. MAHADI HASAN SHAON

1

2

Course Code: CSE-0613-2101 Credits: 03

CIE Marks: 90

Exam Hours: 03 SEE Marks: 60

Theory of Computation

Course Learning Outcome (CLOs): After Completing this course successfully,
the student will be able to…

CLO 1 Describe the concepts and formalisms used in formal language theory and automata theory, including the notions of

regular and context-free languages, finite automata, pushdown automata, and Turing machines.

CLO 2 Understand the fundamental results and techniques in automata theory and complexity theory, such as the pumping

lemma, decidability, NP-completeness, polynomial-time reductions, and approximation algorithms.

CLO 3 Create and design automata, regular expressions, context-free grammars, and Turing machines to solve problems and

recognize languages.

CLO 4 Apply the concepts and techniques of automata theory to solve problems in various areas, such as computer science,

linguistics, and engineering.

CLO 5 Identify the limitations of automata and formal language theory, and appreciate the broader implications of these

limitations on the theory and practice of computer science.

SUMMARY OF COURSE CONTENT

3

Recommended Books:

Sl. No. COURSE CONTENT HRs CLOs

1. Introduction: Formal language theory, Formal proof, Inductive proofs and Central concepts of automata theory. 6 CLO1

CLO2

1. Finite Automata: Deterministic finite automata, Nondeterministic finite automata, Finite automata with ε-transitions,

Equivalence and conversion of deterministic and nondeterministic finite automata.

6 CLO3

1. Regular Expressions and Languages: Regular expressions, Algebraic laws for regular expressions, Regular languages,

Pumping lemma.

6 CLO3

1. Context Free Grammar and Languages: Context free grammars, Parsing (or derivation) and parse trees, Ambiguity in

grammars and languages, Normal forms for context-free grammars, Pumping lemma for CFL’s.

6 CLO3

CLO4

1. Push Down Automata: Push down automata, Acceptance by empty store and final state, Equivalence between

pushdown automata and context-free grammars, Deterministic push down automata.

6 CLO4

1. Turing Machines: Turing machines, The church-Turing machine, Techniques for Turing machine construction,

Configurations, Computing with Turing machines, Restricted Turing machines, Turing machines and computers,

Combining Turing machines.

6 CLO4

CLO5

1. Undecidability and Complexity Theory: Recursively enumerable language, the undecidability of the halting problem,

Undecidable problems about Turing machines, Post’s correspondence problem, Complexity theory including the

classes P, NP, examples of problems in these classes, NP completeness, Polynomial time reducibility, The Cook-Levin

theorem, examples of NP complete problems, approximation algorithms, and probabilistic algorithms.

6 CLO5

1. Introduction to Automata Theory, Languages, and Computation by John E. Hopcroft, Rajeev

Motwani, and Jeffrey D. Ullman

2. Theory of Computation by Michael Sipser

ASSESSMENT PATTERN

Bloom's Category
Marks (out of 90)

Tests
(45)

Assignments
(15)

Quizzes
(15)

Attendance
(15)

Remember 5 03

Understand 5 04 05

Apply 15 05 05

Analyze 10

Evaluate 5 03 05

Create 5

Bloom's Category Test

Remember 7

Understand 7

Apply 20

Analyze 15

Evaluate 6

Create 5

CIE- Continuous Internal Evaluation (90 Marks)

SEE- Semester End Examination (60 Marks)

Week No. Topics Teaching Learning Strategy(s) Assessment Strategy(s) Alignment to CLO

1 Introduction to Theory of

Computation

Lecture, multimedia, group

discussion

Feedback, Q&A, assessment of

LOs

CLO1

2 Finite Automata Explain DFA and NFA, conversion,

and applications through

interactive sessions and exercises

Feedback, Q&A, quizzes CLO2

3 Equivalence of NFA & DFA Explore equivalence proofs

through lectures and problem-

solving workshops

Group activities, quizzes,

assignments

CLO2

4 Regular Languages and

Expressions

Lecture, multimedia, interactive

sessions

Feedback, Q&A, group discussions CLO3

5 Context-Free Grammars and

Languages

Lecture, multimedia, and practical

examples on CFG creation and

parsing techniques

Midterm Quiz, hands-on practice CLO4

6 Pushdown Automata Lecture and problem-solving

sessions focusing on PDA and CFG

relationships

Feedback, Q&A, assessment of

LOs

CLO5

7 Turing Machines Implement Turing machines

through hands-on practice and

explore their significance

Group assignments, feedback,

quizzes

CLO6

8 Revision and Recap Review through group discussions

and interactive sessions to

consolidate knowledge

Feedback, problem-solving

assessments

CLO1-8

9 Practical Applications of Theory Hands-on exercises applying

concepts to real-world

computational problems

Case studies, group work CLO9

Week No. Topics Teaching Learning Strategy(s) Assessment Strategy(s) Alignment to CLO

10 Mid Examination Summative evaluation covering

the entire course content

Written exam, case studies CLO1-9

11 Decidability and Computability Interactive discussions on

undecidability problems and

hands-on exploration of key

topics

Feedback, Q&A, Midterm Exam CLO7

12 Complexity Theory Lecture, problem-solving

sessions on P, NP, NP-complete,

and NP-hard problems

Feedback, Q&A, quizzes CLO8

13 Equivalence of NFA & DFA

(Revisited)

Deep understanding with

further problem-solving on

equivalence

Practical exercises, quizzes CLO2

14 Revision and Recap Consolidate topics with a focus

on problem-solving and exam

preparation

Final Term quizzes, feedback CLO1-8

15 Feedback and Future Directions Reflective discussions on the

course and exploration of

research opportunities

Participation feedback CLO10

16 Final

Documentation/Presentation

Showcase application of Theory

of Computation concepts in a

practical or research project

Presentations, project

assessment

CLO1-10

17 Final Examination Summative evaluation covering

the entire course content

Written exam, case studies CLO1-10

WEEK 1

THEORY OFCOMPUTATION

The Theory of Computation is the branch of

computer science that deals with how efficiently

problems can be solved on a model of computation,

using an algorithm.

The field is divided into three major branches:

Automata theory and language

Computability theory

Complexity theory

COMPLEXITY

THEORY

The main question asked in this area is “What makes some

problems computationally hard and other problems easy?”

A problem is called “easy”, if it is efficiently solvable.

Examples of “easy” problems are (i) sorting a sequence of, say,

1,000,000 numbers, (ii) searching for a name in a telephone

directory.

A problem is called “hard”, if it cannot be solved efficiently, or if

we don’t know whether it can be solved efficiently.

Examples of “hard” problems are (i) factoring a 300-digit integer

into its prime factors.

Central Question in Complexity Theory: Classify problems

according to their degree of “difficulty”. Give a proof that

problems that seem to be “hard” are really “hard”.

COMPUTABILITY

THEORY

Computability theory In the 1930’s, G¨odel, Turing, and Church

discovered that some of the fundamental mathematical problems

cannot be solved by a “computer”.

To attack such a problem, we need formal definitions of the

notions of computer, algorithm, and computation.

The theoretical models that were proposed in order to understand

solvable and unsolvable problems led to the development of real

computers.

Central Question in Computability Theory: Classify

problems as being solvable or unsolvable.

AUTOMATA

THEORY

Automata Theory deals with definitions and properties of different types of “computation models”. Examples
of such models :

Finite Automata :These are used in text processing, compilers, and hardware design.

Context-Free Grammars: These are used to define programming languages and in Artificial Intelligence.

Turing Machines: These form a simple abstract model of a “real” computer, such as your PC at home.

Central Question in Automata Theory: Do these models have

the same power, or can one model solve more problems than

the other?.

THEORY OFCOMPUTATION

Purpose and motivation :

oWhat are the mathematical properties of computer

hardware and software ?

oWhat is a computation and what is an algorithm?

Can we give mathematical definitions of these

notions?

oWhat are the limitations of computers? Can

“everything” be computed?

Purpose of the TOC: Develop formal mathematical models of

computation that reflect real-world computers.

WEEK 2

FINITE AUTOMATA

• We will use several different models, depending on the features we want to focus
on. Begin with the simplest model, called the finite automaton.

• Good models for computer with an extremely limited amount of memory. For
example, various household appliances such as dishwashers and electronic
thermostats, as well as parts of digital watches and calculators.

• The design of such devices requires keeping the methodology and terminology of
finite automata in mind.

• Next we will analyze an example to get an idea.

FINITE STATE MACHINE

• The finite state machine represents a
mathematical model of a system with certaininput.

• The model finally gives certain output.

• The input is processed by various states, these states are
called as intermediate states.

• The finite state system is very good design tool for the
programs such as TEXT EDITORS and LEXICALANALYZERS.

DEFINITION OF FINITE AUTOMATA

A finite automata is a collection of 5-tuple(Q,,,q0,F) Where,

 Q is finite set of states, which is nonempty.

 is input alphabet, indicates inputset.

 is transition function or mapping function. We candetermine the

 next state using thisfunction.

q0 is an initial state and is in

F is set of final states.

 = Delta

FINITE AUTOMATA MODEL

• The finite automata can be represented
asfollows:

Input TapeA B A B A B A B A B

Finite
Control

Tape
Reader

Input Tape: It is a linear tape having
some number of cells. Each input
symbol isplaced in eachcell.

Finite Control:The finite control
decides the next state on receiving
particular input from inputtape.

Output

EXAMPLE

Automatic doors swing open
when sensing that a person is
approaching.

An automatic door has a pad
in front to detect the presence
of a person about to walk
through the doorway.

Another pad is located to the
rear of the doorway so that –

The controller can hold the
door long enough for the
person to pass all the way
through.

The door does not strike
someone standing behind
it as it opens.

Front

pad

Rear

pad

Figure: Top view of an automatic door

CLOSED OPEN

REAR

BOTH

NEITHER

REAR

BOTH

FRONT

FRONT

NEITHER

Figure: State diagram for Automatic door controller

Input Signal

NEITHER FRONT REAR BOTH

State
CLOSED CLOSED OPEN CLOSED CLOSED

OPEN CLOSED OPEN OPEN OPEN

Figure: State Transition table for automatic door controller

TERMINOLOGY

• The above figure is called state diagram of M1.

• It has three states, labeled q1, q2, and q3.

• The start state is q1, indicated by the arrow pointing at it from no where.

• The accept state, q2, is the one with a double circle.

• The arrow going from one state from another are called transitions.

• The symbol(s) along the transition is called label.

M1 works as follows –

The automaton receives the symbols from the input string one by one from left
to right.

After reading each symbol, M1 moves from one state to another along the
transition that has the symbol as its label.

When it reads the last symbol, M1 produces the output.

The output is ACCEPT if M1 is now in an accept state and REJECT if it is not.

q1 q2 q3

0
01

1

0,1
Figure: A finite automaton called M1 that has three states.

SIMULATION

After feeding the input string 1101 to the above machine, the processing proceeds
as follows –

Start in state q1;

• Read 1, follow transition from q1 to q2;

• Read 1, follow transition from q2 to q2;

• Read 0, follow transition from q2 to q3;

• Read 1, follow transition from q3 to q2;

Accept, as the machine M1 is in an accept state q2 at the end of the input
string.

0 1

q1 q2 q3

01

0,1

1101
1101

101

01

1

ε

Figure: Finite Automaton M1.

TYPES OF AUTOMATA

Finite Automata

Deterministic
Finite Automata

Non Deterministic
Finite Automata

TYPES OF AUTOMATA
• Deterministic Finite Automata: The Finite Automata is called

Deterministic Finite Automata if there is only one path for a
specific input from current state to next state.

It can be represented as follows:

• A machine M = (Q,,,q0,F) Where ,

Q is finite set of states, which is non empty.

 is input alphabet, indicates input set.

 is transition function or mapping function. We can

determine the next state using this function.

Where :Q X  -> Q

q0 is an initial state and is in Q

 F is set of final states.

TYPES OF AUTOMATA
• Non Deterministic Finite Automata: The Finite Automata is called

Non Deterministic Finite Automata if there are more than one
path for a specific input from current state to next state.

It can be represented as follows:

• A machine M = (Q,,,q0,F) Where ,

Q is finite set of states, which is non empty.

 is input alphabet, indicates input set.

 is transition function or mapping function. We can

determine the next state using this function.

Where :Q X  -> 2Q

q0 is an initial state and is in Q

 F is set of final states.

DIFFERENCE BETWEEN DFA &
NFA

Deterministic Finite
Automata

Non Deterministic Finite
Automata

For Every symbol of the alphabet,
there is only one state transition in
DFA.

We do not need to specify how does
the NFA react according to some
symbol.

DFA cannot use Empty String transition. NFA can use Empty String transition.

DFA can be understood as one machine. NFA can be understood as multiple little
machines computing at the same time.

DFA will reject the string if it end
at other than accepting state.

If all of the branches of NFA dies or
rejects the string, we can say that NFA
reject the string.

Backtracking is allowed in DFA. Backtracking is not always allowed in
NFA.

DFA is more difficult to construct. NFA is easier to construct.

WEEK 3

TYPES OF AUTOMATA

Finite Automata

Deterministic
Finite Automata

Non Deterministic
Finite Automata

TYPES OF AUTOMATA
• Deterministic Finite Automata: The Finite Automata is called

Deterministic Finite Automata if there is only one path for a
specific input from current state to next state.

It can be represented as follows:

• A machine M = (Q,,,q0,F) Where ,

Q is finite set of states, which is non empty.

 is input alphabet, indicates input set.

 is transition function or mapping function. We can

determine the next state using this function.

Where :Q X  -> Q

q0 is an initial state and is in Q

 F is set of final states.

TYPES OF AUTOMATA
• Non Deterministic Finite Automata: The Finite Automata is called

Non Deterministic Finite Automata if there are more than one
path for a specific input from current state to next state.

It can be represented as follows:

• A machine M = (Q,,,q0,F) Where ,

Q is finite set of states, which is non empty.

 is input alphabet, indicates input set.

 is transition function or mapping function. We can

determine the next state using this function.

Where :Q X  -> 2Q

q0 is an initial state and is in Q

 F is set of final states.

Automaton

temporary memory

Automaton

CPU

input memory

output memory

Program memory

Finite Automaton

InputString

Output StringFinite

Automaton

DFA

• DFA: Deterministic Finite Automaton.

• Every step of a computation follows in a unique way from the preceding step.

• When the machine is in a given state and reads the next input symbol, we know the next state will be –
it is determined.

• We call this deterministic computation.

FORMAL DEFINITION OF A DFA

• A DFA is a five-tuple:

 M = (Q, Σ, δ, q0, F)

 Q A finite set of states

 Σ A finite input alphabet

 q0 The initial/starting state, q0 is in Q

 F A set of final/accepting states, which is a subset of Q

 δ A transition function, which is a total function from Q x Σ to Q

 δ: (Q x Σ) –> Q δ is defined for any q in Q and s in Σ, and

 δ(q,s) = q’ is equal to some state q’ in Q, could be q’=q

 Intuitively, δ(q,s) is the state entered by M after reading symbol s while in state q.

• The finite control can be described by a transition diagram or table:

 1 0 0 1 1

 q0 q0 q1 q0 q0 q0 accpeted

• One state is final/accepting, all others are rejecting.

• The above DFA accepts those strings that contain an even number of 0’s, including
the null string, over Sigma = {0,1}

 L = {all strings with zero or more 0’s}

• Note, the DFA must reject all other strings

q0
q1

0

0

1

1

 Q = {q0, q1}

 Σ = {0, 1}

 Start state is q0

 F = {q0}

 δ:

 0 1

 q0 q1 q0

 q1 q0 q1

q0
q1

0

0

1

1

NONDETERMINISTIC FINITE STATE
AUTOMATA (NFA)

• An NFA is a five-tuple:

 M = (Q, Σ, δ, q0, F)

 Q A finite set of states

 Σ A finite input alphabet

 q0 The initial/starting state, q0 is in Q

 F A set of final/accepting states, which is a subset of Q

 δ A transition function, which is a total function from Q x Σ to 2Q

 δ: (Q x Σ) –> 2Q :2Q is the power set of Q, the set of all subsets of Q δ(q,s)
 :The set of all states p such that there is a transition

 labeled s from q to p

 δ(q,s) is a function from Q x S to 2Q (but not only to Q)

PROPERTIES OF NFA

• We already know DFA, so it would be sufficient to look into the
differences of properties between the two.

• In NFA a state may have –

• Zero or more exiting arrows for each alphabet symbol.

• Zero or more exiting arrows with the label ε.

• So we can see that, not all steps of a computation follows in a
unique way from the preceding step. There can be multiple choices
to move from one state to another with a symbol. That’s the reason
it’s computation is called nondeterministic.

a1 a2 a3 a4

0,1

1 0, ε 1

0,1

RUNNING AN NFA

• If we encounter a state with multiple ways to proceed –

• The machine splits into multiple copies of itself and follows all the possibilities in parallel.

• Each copy of the machine takes one of the possible ways to proceed and continues as before.

• If there are subsequent choices, the machine splits again.

• If a state with an ε symbol on an exiting arrow is encountered without reading any input, the machine
splits into multiple copies,

• one following each of the exiting ε-labeled arrows and

• one staying in the current state.

• If the next input symbol doesn’t appear on any of the arrows exiting the state occupied by a copy of the
machine, that copy of the machine dies, along with the branch of the computation associated with it.

• If any one of these copies of the machine is in an accept state at the end of the input, the NFA accepts the
input strings.

• So, nondeterminism may be viewed as a kind of parallel computation wherein several processes can be
running concurrently.

• If at least one of these processes accepts then the entire computation accepts.

EXAMPLE

Symbol read

0 ---

1 --

0 --

1 --

1 --

0 -------------------------------------

a1 a2 a3 a4

0,1

1 0, ε 1

0,1

a1

a1

a2a1

a4

a1 a3

a3a1 a2

a4

a4

a2 a3a1

a1 a3

a4

a4

a3

a4 a4

010110

WEEK 4

EXAMPLE

• Let, the above NFA N1 = (Q1, Σ, 1, a1, F1).

• Q1 = {a1, a2, a3, a4}.

• Σ = {0, 1}.

• 1 is given as –
 | 0 1 

a1 | {a1} {a1, a2} 
a2 | {a3}  {a3}
a3 |  {a4} 
a4 | {a4} {a4} 

• a1 is the start state.

• F1 = {a4}.

a1 a2 a3 a4

0,1

1 0, ε 1

0,1

EXAMPLE

• Let, the above NFA N2 = (Q2, Σ, 2, b1, F2).

• Q2 = {b1, b2, b3}.

• Σ = {0, 1}.

• 2 is given as –
 | 0 1 

b1 |  {b2} {b3}
b2 | {b2, b3} {b3} 
b3 | {b1}  

• b1 is the start state.

• F2 = {b1}.

b1

b2 b3

0

1

0,1

0

ε

EQUIVALENCE BETWEEN NFA & DFA

• Every NFA has an equivalent DFA.

• Let N = (Q, Σ, , q0, F) be the NFA recognizing some language A.

• Construct a DFA M = (Q, Σ,  , q0, F) which recognizes A.
• Q= P (Q), power set of Q.

• Every state of M is a set of states of N.

• Let E(R) = {q | q can be reached from RQ by traveling along 0 or more 
arrows, including the members of R themselves}.

• For BQ and aΣ,  (B, a)={q Q | q E( (r, a)) for some r B}.

• Each state B may go to a set of states after reading any symbol a. So,
we take the union of all these sets.

• q0 = E({q0}).

• M starts at the state corresponding to the collection containing all
the possible states that can be reached from the start state of N
along with the  arrows.

• F = {D Q| D contains an accept state of N}.

NFA-DFA EQUIVALENCE
Equivalent DFA M = (Q, Σ, , q0, F).
 Q = {b1,b2,b3} = P (Q)

 Q = { , {b1}, {b2}, {b3}, {b1, b2}, {b1, b3},

 {b2, b3}, {b1, b2, b3} };

 is given as – _ 0 1

 {b1} {b2}

 {b2} {b2, b3} {b3}

 {b3} {b1, b3}

 {b1, b2} {b2, b3} {b2, b3}

 {b1, b3} {b1, b3} {b2}

 {b2, b3} {b1, b2, b3} {b3}

 {b1, b2, b3} {b1, b2, b3} {b2, b3}

Σ = {0, 1}.

q0 = E({b1}) = {b1, b3} is the start state;

F = {{b1}, {b1, b2}, {b1, b3}, {b1, b2, b3}}.

0

b1

b2 b3

1

0,1

0

ε

Let, the above NFA N2=(Q2, Σ, 2, b1, F2).

Q2 = {b1,b2,b3}; Σ = {0,1};

b1 = start state; F2 = {b1}.

2 is given as –

 0 1  .

b1  {b2} {b3}

b2  {b2, b3} {b3} 

b3  {b1}  

NFA-DFA EQUIVALENCE Equivalent DFA M = (Q, Σ, , q0, F).
 Q = {b1,b2,b3} = P (Q)

 Q = { , {b1}, {b2}, {b3}, {b1, b2}, {b1, b3},

 {b2, b3}, {b1, b2, b3} };

 is given as – _ 0 1

 {b1} {b2}

 {b2} {b2, b3} {b3}

 {b3} {b1, b3}

 {b1, b2} {b2, b3} {b2, b3}

 {b1, b3} {b1, b3} {b2}

 {b2, b3} {b1, b2, b3} {b3}

 {b1, b2, b3} {b1, b2, b3} {b2, b3}

Σ = {0, 1}.

q0 = E({b1}) = {b1, b3} is the start state;

F = {{b1}, {b1, b2}, {b1, b3}, {b1, b2, b3}}.



{b3}

{b1, b2}

{b1}

{b2}

{b1, b2, b3}

{b1, b3}

{b2, b3}

0, 1

0, 1

1

1

1

1

1

1

0

0

0

0

0

0

Remove the

states with no

incoming

arrows.

WEEK 5

REGULAR EXPRESSION

• Regular expression describes languages.

• Regular expression can be build up using regular operations.

• Precedence order: * • 

• Example:

• (01)0* = ({0}{1})•{0}* = {0,1}•{0}*
A = {w  string w starts with a 0 or a 1 followed by zero or more 0’s}

• (01)* = ({0}{1})* = {0,1}*
A = {all possible string with 0s and/or 1s}.

FORMAL DEFINITION OF REGULAR EXPRESSION

• R is a regular expression if R is –

• a for some a  , represents the language {a}.

• , represents the language {} containing a single string, namely, the empty
string.

• , represents the empty language that doesn’t contain any string. L(*) = {}.

• (R1R2), where R1 and R2 are regular expressions,

• R   = R, but R   may not be equal to R.

• (R1•R2), where R1 and R2 are regular expressions,

• R •  = R, but R •  may not be equal to R.

• (R1*), where R1 is a regular expressions,

EQUIVALENCE WITH FINITE AUTOMATA

• Let convert regular language R into an NFA considering the six cases in
the formal definition of regular language.

• R = a, aΣ. Then L(R)={a}, and the NFA that recognizes L(R) is –

• R = . Then L(R)={}, and the NFA that recognizes L(R) is –

• R = . Then L(R)= , and the NFA that recognizes L(R) is –

a

EQUIVALENCE WITH FINITE AUTOMATA

• R = R1R2. Then L(R)={R1,R2}, and the NFA that recognizes L(R) is –

• R = R1•R2. Then L(R)={R1R2}, and the NFA that recognizes L(R) is –

• R = R1*. Then L(R)={R1}*, and the NFA that recognizes L(R) is –





R2

R1





R1 R2

R1






CONVERTING A REGULAR EXPRESSION TO AN NFA

• Building an NFA from regular expression: (ab)*aba

a

b

a

b








aba
a  b  a








(ab)*aba

CONVERTING A DFA TO A REGULAR EXPRESSION

• This can be done in two parts. For this we introduce a new type of finite automata called generalized
nondeterministic automaton, GNFA.

• First, we will convert a DFA to GNFA, and

• then GNFA to regular expression.

• GNFA has the following special form –

• Transition labels might be in regular expression form.

• The start state doesn’t have any incoming arrow
from any other state.

• There is only one accept state, and it doesn’t
have any outgoing arrow to any other state.

• Start state is never the same as accept state.

• There is only one outgoing arrow to any other
state and to itself, except the start and accept
states. We will consider  labeled outgoing arrows,
if no transition exists between any two states.

qstart qaccept

ab*

a* (aa)*

 b*

aa

ab  ba

ab

b

CONVERTING A DFA TO GNFA

• Add a new start state with an 
arrow to the old start state.

• Add new accept state with  arrows
from the old accept states.

• If any arrows have multiple labels,
union the previous labels into one
label.

• Add arrows with  label between
states where there are no arrows.
This won’t change the language as
 label arrows can never be used.

• Even we might ignore adding such
arrows, as these are arrows which
can be assumed to be there with no
use.

1

2

a

b

a,bab

s

f 2









FORMAL DEFINITION OF GNFA

• A generalized nondeterministic finite automaton is a 5-tuple,
(Q, Σ, , qstart, qaccept) where –

• Q is the finite set of states,

• Σ is the input alphabet,

•  : (Q - {qstart})  (Q - {qaccept}) → R is the transition function,

• qstart is the start state,

• qaccept is the accept state.

• A GNFA accepts a string w in Σ* if w = w1w2…wk, where each
wi is in Σ* and a sequence of states q0, q1, …qk exists such that –

• q0=qstart is the start state,

• qk=qaccept is the accept state, and

• For each i, we have wi L(Ri), where Ri = (qi-1, qi);
i.e., Ri is the expression on the arrow from qi-1 to qi.

WEEK 6

CFL

SYMBOL

Symbol: Is a basic building block of Theory of Computation.

e.g. a,b,….z(Latters)

 0,1,….9(Digit)

ALPHABET

Alphabet: Is a finite set of symbols.

Σ(Sigma)

e.g. Σ={a,b}

Σ={0,1}

Σ={0,1,….9}

Σ={a,b,c}

This all are finite set

STRING

String: Is a finite sequence of symbol.

Ɯ(String)

e.g. Ɯ={0,1}

Ɯ=0110

Ɯ=1010

LENGTH OF STRING

Length of String: |Ɯ|

Σ = {a,b}

Ɯ = ababba = 6

| Ɯ | = 6 (length is 6)

EMPTY STRING

Empty String: ε(Epsilon) or λ(Lambda)

Σ={0,1}

0 is a string over the Σ of length 1

10 is a string over the Σ of length 2

101 is a string over the Σ of length 3

e.g. (∅/{} = Empty Set)

LANGUAGE
Language: Is collection of strings.

(It can be finite/ infinite)

e.g. Σ = {a, b}

L1= Set of all strings over Σ of length 2

={aa,ab,ba,bb} Finite Set

L2= Set of all strings over Σ of length 3

={aaa,aab,aba,abb,baa,bab,bba,bbb} Finite Set

L3= Set of all strings over Σ where each string starts with ‘a’

={a,aa,ab,aaa,aba,aaaa,…..} Infinite set

POWER OF Σ

Σ={a,b}

Σ1 = Set of all strings over this Σ of length 1

={a,b}

Σ2 = Set of all strings over this Σ of length 2

={aa,ab,ba,bb}

Σ3 = Set of all strings over this Σ of length 3

={aaa,aab,aba,abb,baa,bab,bba,bbb}

Σ° = Set of all strings over this Σ of length 0

={ε}

Σ*

Σ* = Set of all possible strings.

Σ* = Σ° U Σ1 U Σ2 U Σ3

={ε} U {a,b} U {aa,ab,ba,bb} ……

Previous,

L1 ⊆ Σ*

L2 ⊆ Σ*

L3 ⊆ Σ*

So, all language is subset of Σ*

e.g. ⊆ = Subset

SET

Set: is a collection of objects.

S={a,b,c,h,d}

S={1,2,5,6}

Set

1. Empty set S = ∅/{}

2. Not Empty Set S ≠ ∅

Not Empty Set

1. Finite Set

2. Infinite Set

CFG

AMBIGUITY – PARSE TREE

• If a grammar generates the same string in several different ways, we say that the string
is derived ambiguously in the grammar.

• If a grammar generates some string ambiguously we say that the grammar is
ambiguous.

• Example: Grammar G, EXPR→EXPR+EXPR|EXPREXPR|(EXPR)|a

Two parse trees for the string a+aa in G

EXPR

EXPREXPR

EXPREXPR

a aa+ 

EXPR

EXPR

EXPR

EXPR

EXPR

aaa +

AMBIGUITY - DERIVATION

• When we say that a grammar generates a string ambiguously, we mean that the
string has two different parse trees, not two different derivations.

• A derivation of string w in a grammar G is a leftmost derivation if at every step
the leftmost remaining variable is the one replaced.

• Then we can say, a string w is derived ambiguously in CFG G if it has two or more
different leftmost derivations.

• Grammar G is ambiguous if it generates some string ambiguously.

• Some CFLs can only be generated by ambiguous grammars. Such languages are
called inherently ambiguous.
Example: {0i1j2k | i=j or j=k}

CHOMSKY NORMAL FORM

• It is often convenient to have CFGs in simplified form. One such form is Chomsky
normal form.

• A context free grammar is in Chomsky normal form if every rule is of the form

 A → BC

 A → a

where a is any terminal and A, B, and C are any variables – except that B and C
may not be the start variable.

In addition S →  is permitted, where S is the start variable.

CONVERT ANY GRAMMAR G TO CHOMSKY NORMAL FORM

• Add a new start symbol S0 and the new rule S0→S, where S was the
original start symbol.

• Eliminate all  rules of the form A → , where A is not the start
symbol.

• Add rule R→uv for every rule of the form R→uAv, where u and v are
strings of variables and terminals.

• Add such rules for every occurrence of A. for example, add R→uvAw,
R→uAvw, R→uvw for the rule of the form R→uAvAw.

• Add R→ for the rule of the form R→A, unless we have previously removed
the rule R→.

CONVERT ANY GRAMMAR G TO CHOMSKY NORMAL FORM

• Eliminate all unit rules of the form A → B.

• Add rule A → u for the rule of the form B → u, unless this was a unit rule previously removed.

• Here u is a string of variables and terminals.

• Convert remaining rules into proper form,
R→PQ and R→u.

• We replace each rule of the form A → u1u2…uk with the rules A→u1A1, A1→u2A2,

A2→u3A3, … , Ak-2→uk-1uk.

• Here k  3 and each ui is a variable or terminal symbol,
and Ai’s are new variables.

• If k  2, replace any terminal ui in the preceding rule(s) with the new variable Ui and the rule
Ui→ui.

• The above procedure converts a Grammar to a Chomsky normal form. Next, we will go
through an example.

WEEK 7

RECOGNIZING CONTEXT FREE LANGUAGES

• Regular Languages (RL) are recognized by the computational model Finite Automaton (FA),
examples: DFA, NFA.

• A computational model is required that can recognize some Context Free Language (CFL).

• Based on the definition of the language to be recognized, additional memory with rule of
access is required to construct such computational model.

• Push Down Automata (PDA) is the computational model that can recognize some Context Free
Language (CFL).

• PDA contains additional memory with the LIFO (Last In First Out) access rule. That is, it
maintains a stack where an element is pushed down the stack.

• Hence the name Push Down Automata.

PUSHDOWN AUTOMATA(NON-REGULAR LANGUAGES)

• Have an extra component called stack.

• Stack provides additional memory beyond the finite amount available in the control.

• Schematic of a pushdown automaton

• Control represents the states and transition function

• The arrow on the tape, containing the input string, represents the input head, pointing at the next input symbol to be
read.

• The arrow on the stack points the top element.

• Writing symbol on the stack is referred to as pushing down the symbols.

• Removing a symbol is referred to as popping up.

• The top symbol of the stack can be read and removed at any time.

FORMAL DEFINITION

• A pushdown automaton is a 6-touple (Q, Σ, , , q0, F), where Q, Σ, , and F are all
finite sets and

• Q is the set of states,

• Σ is the set of alphabet,

• Σ= Σ  {}

•  is the stack alphabet,

• =   {}

•  : Q  Σ   → P(Q  )

• Domain of the transition function is the current state, next input symbol read, and top symbol
of the stack.

• Because of the nondeterminism, i.e. several legal next moves,  returns a set of members, each
containing the next state and the next stack symbol.

• q0Q is the start state, and

• F  Q is the set of accept states

EXAMPLE: PDA

• L = {0n1n | n≥0}

• M = (Q, , , , q1, F), where

• Q = {q1, q2, q3, q4},

•  = {0, 1},

•  = {0, $},

• Test for an empty stack is done by initially placing a special symbol $ on the stack. If it
ever sees the sign $ again, it knows that the end of stack effectively is empty.

• F = {q1, q4},

•  is given in the following table, wherein blank entries signify .

Input: 0 1 

Stack: 0 $  0 $  0 $ 

q1 {(q2, $)}

q2 {(q2, 0)} {(q3, )}

q3 {(q3, )} {(q4, )}

q4

EXAMPLE - STATE DIAGRAM

• We write “a, b → c” to signify that when the machine is reading an a
from the input it may replace the symbol b on the top of the stack with a c.

• State diagram for the PDA M that recognizes {0n1n | n ≥ 0}

q1

q4 q3

q2

,  → $
0,  → 0

1, 0 → 

, $ → 

1, 0 → 

Stack

$

0

0

0

Input 0 0 0 1 1 1

TRANSITION TABLE – STATE DIAGRAM

  is given in the following table, wherein blank entries signify .

q4 q3

0,  → 0

1, 0 → 

1, 0 → 

q1 q2

,  → $

, $ → 

WEEK 8

FOUNDATIONS

•The theory of computation and the
practical application it made possible — the
computer — was developed by an
Englishman called Alan Turing.

79

THE TURING MACHINE

•Turing’s machine — which came to be
called the Turing machine — was this:

•(1) A tape of infinite length

•(2) Finitely many squares of
the tape have a single
symbol from a finite
language.

•(3) Someone (or something)
that can read the squares
and write in them.

• (4) At any time, the machine is in
one of a finite number of internal
states.

• (5) The machine has instructions
that determine what it does given
its internal state and the symbol it
encounters on the tape. It can

• change its internal state;

• change the symbol on the
square;

• move forward;

• move backward;

• halt (i.e. stop). 80

TURING MACHINES

81

THE LANGUAGE HIERARCHY

82

*a
Regular Languages

Context-Free Languages

nnba Rww

nnn cba ww?

**ba

?

83

*a

Regular Languages

Context-Free Languages

nnba Rww

nnn cba ww

**ba

Languages accepted by
Turing Machines

A TURING MACHINE

84

............

Tape

Read-Write head

Control Unit

85

............

Read-Write head

The head at each time step:

 1. Reads a symbol
 2. Writes a symbol
 3. Moves Left or Right

86

............

Example:

Time 0

............

Time 1

1. Reads

2. Writes

a a cb

a b k c

a

k
3. Moves Left

87

............

Time 1

a b k c

............

Time 2

a k cf

1. Reads

2. Writes

b

f
3. Moves Right

THE INPUT STRING

88

............

   

Blank symbol

head

a b ca

Head starts at the leftmost position
of the input string

Input string

89

............

   

Blank symbol

head

a b ca

Input string

Remark: the input string is never empty

STATES & TRANSITIONS

90

1q 2qLba ,→

Read
Write

Move Left

1q 2qRba ,→

Move Right

91

Example:

1q 2qRba ,→

............

   a b ca

Time 1

1q
current state

93

............

   a b ca

Time 1

1q 2qRba ,→

............

   a b cb

Time 2

1q

2q

HALTING

97

The machine halts if there are
no possible transitions to follow

98

Example:

............

   a b ca

1q

1q

2qRba ,→

3qLdb ,→

No possible transition

HALT!!!

FINAL STATES

99

1q 2q Allowed

1q 2q Not Allowed

• Final states have no outgoing transitions

• In a final state the machine halts

ACCEPTANCE

100

Accept Input If machine halts
in a final state

Reject Input

If machine halts
 in a non-final state
 or
 If machine enters
 an infinite loop

TURING MACHINE EXAMPLE

101

A Turing machine that accepts the language:

*aa

0q

Raa ,→

L,→
1q

102

   aaTime 0

0q

a

0q

Raa ,→

L,→
1q

103

   aaTime 1

0q

a

0q

Raa ,→

L,→
1q

104

   aaTime 2

0q

a

0q

Raa ,→

L,→
1q

105

   aaTime 3

0q

a

0q

Raa ,→

L,→
1q

106

   aaTime 4

1q

a

0q

Raa ,→

L,→
1q

Halt & Accept

107

Rejection Example

0q

Raa ,→

L,→
1q

   baTime 0

0q

a

108

0q

Raa ,→

L,→
1q

   baTime 1

0q

a

No possible Transition

Halt & Reject

INFINITE LOOP EXAMPLE

109

0q

Raa ,→

L,→
1q

Lbb ,→

110

   baTime 0

0q

a

0q

Raa ,→

L,→
1q

Lbb ,→

111

   baTime 1

0q

a

0q

Raa ,→

L,→
1q

Lbb ,→

112

   baTime 2

0q

a

0q

Raa ,→

L,→
1q

Lbb ,→

113

   baTime 2

0q

a

   baTime 3

0q

a

   baTime 4

0q

a

   baTime 5

0q

a

In
fin

ite lo
o

p

114

Because of the infinite loop:

•The final state cannot be reached

•The machine never halts

•The input is not accepted

ANOTHER TURING MACHINE EXAMPLE

115

Turing machine for the language

}{ nnba

0q 1q 2q3q
Rxa ,→

Raa ,→

Ryy ,→

Lyb ,→

Laa ,→

Lyy ,→

Rxx ,→

Ryy ,→

Ryy ,→
4q

L,→

116

0q 1q 2q3q
Rxa ,→

Raa ,→

Ryy ,→

Lyb ,→

Laa ,→

Lyy ,→

Rxx ,→

Ryy ,→

Ryy ,→
4q

L,→

 ba

0q

a bTime 0 

117

0q 1q 2q3q
Rxa ,→

Raa ,→

Ryy ,→

Lyb ,→

Laa ,→

Lyy ,→

Rxx ,→

Ryy ,→

Ryy ,→
4q

L,→

 bx

1q

a b Time 1

118

0q 1q 2q3q
Rxa ,→

Raa ,→

Ryy ,→

Lyb ,→

Laa ,→

Lyy ,→

Rxx ,→

Ryy ,→

Ryy ,→
4q

L,→

 bx

1q

a b Time 2

119

0q 1q 2q3q
Rxa ,→

Raa ,→

Ryy ,→

Lyb ,→

Laa ,→

Lyy ,→

Rxx ,→

Ryy ,→

Ryy ,→
4q

L,→

 yx

2q

a b Time 3

120

0q 1q 2q3q
Rxa ,→

Raa ,→

Ryy ,→

Lyb ,→

Laa ,→

Lyy ,→

Rxx ,→

Ryy ,→

Ryy ,→
4q

L,→

 yx

2q

a b Time 4

121

0q 1q 2q3q
Rxa ,→

Raa ,→

Ryy ,→

Lyb ,→

Laa ,→

Lyy ,→

Rxx ,→

Ryy ,→

Ryy ,→
4q

L,→

 yx

0q

a b Time 5

122

0q 1q 2q3q
Rxa ,→

Raa ,→

Ryy ,→

Lyb ,→

Laa ,→

Lyy ,→

Rxx ,→

Ryy ,→

Ryy ,→
4q

L,→

 yx

1q

x b Time 6

123

0q 1q 2q3q
Rxa ,→

Raa ,→

Ryy ,→

Lyb ,→

Laa ,→

Lyy ,→

Rxx ,→

Ryy ,→

Ryy ,→
4q

L,→

 yx

1q

x b Time 7

124

0q 1q 2q3q
Rxa ,→

Raa ,→

Ryy ,→

Lyb ,→

Laa ,→

Lyy ,→

Rxx ,→

Ryy ,→

Ryy ,→
4q

L,→

 yx x y

2q

Time 8

125

0q 1q 2q3q
Rxa ,→

Raa ,→

Ryy ,→

Lyb ,→

Laa ,→

Lyy ,→

Rxx ,→

Ryy ,→

Ryy ,→
4q

L,→

 yx x y

2q

Time 9

126

0q 1q 2q3q
Rxa ,→

Raa ,→

Ryy ,→

Lyb ,→

Laa ,→

Lyy ,→

Rxx ,→

Ryy ,→

Ryy ,→
4q

L,→

 yx

0q

x y Time 10

127

0q 1q 2q3q
Rxa ,→

Raa ,→

Ryy ,→

Lyb ,→

Laa ,→

Lyy ,→

Rxx ,→

Ryy ,→

Ryy ,→
4q

L,→

 yx

3q

x y Time 11

128

0q 1q 2q3q
Rxa ,→

Raa ,→

Ryy ,→

Lyb ,→

Laa ,→

Lyy ,→

Rxx ,→

Ryy ,→

Ryy ,→
4q

L,→

 yx

3q

x y Time 12

129

0q 1q 2q3q
Rxa ,→

Raa ,→

Ryy ,→

Lyb ,→

Laa ,→

Lyy ,→

Rxx ,→

Ryy ,→

Ryy ,→
4q

L,→

 yx

4q

x y 

Halt & Accept

Time 13

Week 9

Revision and Recap and Practical
Applications of Theory

1. Finite Automata and Pattern Matching
Finite automata, both deterministic (DFA) and non-deterministic (NFA), are widely used in pattern matching, which
powers tools like:
•Text editors: Identifying specific patterns in text.
•Spam filters: Detecting harmful phrases or URLs in emails.
•Programming languages: Lexical analyzers in compilers use finite automata to recognize tokens.

2. Regular Expressions in Search and Validation
Regular languages are implemented as regular expressions, critical for tasks like:
•Web development: Validating email addresses, phone numbers, and user input in forms.
•Data extraction: Extracting structured information, such as dates or IDs, from unstructured data.

3. Context-Free Grammars in Language Processing
Context-free grammars (CFGs) form the backbone of parsers, which analyze hierarchical structures:
•Programming: Compilers rely on CFGs to parse source code and ensure it follows language syntax.
•Chatbots: CFGs help in processing user inputs grammatically for better responses.

4. Turing Machines and Universal Computation
Turing machines model what computers can and cannot do, guiding the development of:
•Algorithms: Understanding the limits of computation helps optimize solutions.
•Cryptography: Encoding and decoding systems often rely on Turing-complete algorithms.

WEEK 10

Mid Term Examination

WEEK 11

COMPUTABILITY THEORY

• A mathematical problem is computable if it can be solved in principle by a computing device.

• In the 1930’s, well before there were computers, Gödel, Turing, and Church showed that not
all mathematical problems are computable in a computing device.

• There is an extensive study and classification of

• Which mathematical problems are computable, and which are not.

• Computable problems into computational complexity classes according to how much
computation is needed to answer that instance, as a function of the size of the problem
instance.

• Some common synonyms for “computable” are “solvable”, “decidable”, and “recursive”.

COMPUTABILITY HISTORY

• David Hilbert’s Tenth Problem in 1900 states that a given
Diophantine equation (polynomial equation with integral coefficients) is
solvable in rational integers using a finite number of operations.

• Hilbert came up with the term “entscheidungsproblem” (decision problems)
which is the pre-version to the NP-problem that we currently know as SAT
(satisfiability problem) in computing science, in 1928.

• In 1930s, various mathematicians – Alonzo Church, Kurt Gödel, Stephen
Kleene, Markov, Emil Post, and Alan Turing, independently defined what it
means to be computable.

• They defined Lambda calculus, Recursive functions, Formal systems, Markov
algorithms, Post (abstract) machine, and Turing (abstract) machine models,
which are equivalent to each other.

• In 1930 & 1931, Mr. Gödel gave his Completeness and Incompleteness
theorem. A few years later, Church and Turing independently proved that
the entscheidungsproblem is unsolvable.

DEFINITION: TURING MACHINE

• A Turing Machine is a 7-tuple
T = (Q, Σ, Γ, , q0, qA, qR), where:

• Q is a finite set of states

• Σ is the input alphabet, where   Σ

• Γ is the tape alphabet, where   Γ and Σ  Γ

•  : Q  Γ → Q  Γ  {L,R}

• q0  Q is the start state

• qA  Q is the accept state

• qR  Q is the reject state, and qR  qA

EMPTINESS TESTING

• EDFA = {A | A is a DFA with L(A) =  }; This language concerns the behavior of the
DFA A on all possible strings

• Proof for DFA-Emptiness:

• Algorithm for EDFA on input A=(Q,,,q0,F):

• If A is not proper DFA then “reject”

• Make set S with initially S={q0}

• Repeat |Q| times:

• If S has an element in F then “reject”

• Otherwise, add to set S, all the elements that can be -reached from S. i.e., “If qiS and u with (qi,u)=qj, then qj added
to S”.

• If final SF =  then “accept”

DFA-EQUIVALENCE

• A problem that deals with two DFAs:
 EQDFA = {A,B | L(A) = L(B) }

• Theorem: EQDFA is TM-decidable.

• Proof: Look at the symmetric difference between
the two languages:

• Note: “L(A)=L(B)” is equivalent with an empty
symmetric difference between L(A) and L(B).
This difference is expressed by standard DFA
transformations: union, intersection, complement.

))()(())()((BLALBLAL 

DFA-EQUIVALENCE

• Proof Theorem for EQDFA = {A,B | L(A) = L(B) }

• Algorithm on given A,B :

• If A or B are not proper DFA then “reject”

• Construct a third DFA C that accepts the language

• Decide with the TM of the previous theorem
whether or not CEDFA

• If CEDFA then “accept”;
If CEDFA then “reject”

))()(())()((BLALBLAL 

• Similarly we can decide on the following languages:

• ADFA = { (B,w) | B is a DFA that accepts string w }

• Proof Idea: Simulate B on w.
• ANFA = { (B,w) | B is an NFA that accepts string w }

• Proof Idea:

• Transform B into DFA C.

• Simulate C on w.

DECIDABLE AND UNDECIDABLE PROBLEMS IN THEORY
OF COMPUTATION

• In the Theory of Computation, problems are categorized as decidable or undecidable. Decidable
problems have algorithms that provide correct solutions in finite time, while undecidable problems lack
algorithms that can solve them for all inputs.

DECIDABLE

• A problem is decidable if there exists an algorithm that always provides a correct answer. For example,
finding all prime numbers between 1000 and 2000 can be solved using a straightforward algorithm. In
terms of a Turing machine, a problem is decidable if the machine halts on every input with a "yes" or
"no" answer, making it Turing Decidable.

SEMI DECIDABLE PROBLEMS

• Semi-decidable problems are those for which a Turing machine halts on the input accepted by it but it
can either halt or loop forever on the input which the Turing Machine rejects. Such problems are
termed as Turing Recognizable problems.

UNDECIDABLE PROBLEMS

• Undecidable problems are those for which no algorithm can provide a correct answer in finite time.
While they may be partially decidable, there will always be cases where a Turing machine enters an
infinite loop without producing a result. For example, Fermat's Theorem is an undecidable problem
because a Turing machine attempting to find a contradiction for the equation an+bn=cna^n + b^n =
c^nan+bn=cn (where n>2n > 2n>2) might run indefinitely without reaching a conclusion.

COMPARISON: DECIDABLE VS.
UNDECIDABLE PROBLEMS

Aspect Decidable Problems Undecidable Problems

Definition
Problems that can be solved by an algorithm that always gives a correct answer in

a finite time.
Problems where no algorithm can give a solution for all possible cases.

Solvability Always solvable using a step-by-step process (algorithm). Cannot be solved for all inputs using a single algorithm.

Algorithm
There is an algorithm that works for every input and always finishes with an

answer.
No algorithm can solve the problem for every input.

Halting The algorithm stops (halts) and gives an answer for every input. The algorithm might never stop for some inputs, or no algorithm exists.

Examples
Problems like checking if a number is even or odd, or if a string belongs to a regular

language (like finding a match in a search).

Examples include the Halting Problem, where you can’t always tell if a

program will finish running or run forever.

Decision Procedure There’s a clear method to always reach a correct conclusion. No guaranteed method exists to solve the problem in every case.

Complexity May be complex but can always be computed. Too complex to compute in general, and no universal solution exists.

Applications
Useful in practical computing tasks like compiling code or searching for text

patterns.

Helps understand the limits of what computers can do, showing what

problems are beyond computation.

WEEK 12

◆ Complexity Theory

• Easy problems (sort a million items in a few seconds)

• Hard problems (schedule a thousand classes in a hundred years)

• What makes some problems hard and others easy (computationally) and how do

we make hard problems easier?

• Complexity Theory addresses these questions

Computability Theory

• In the first half of the 20th century, mathematicians such as Kurt Gödel, Alan Turing, and

Alonzo Church discovered that certain basic problems cannot be solved by computers

➢ determine whether a mathematical statement is true or false

• Complexity Theory: classify problems as easy ones and hard ones

• Computability Theory: classify problems are solvable and not solvable

AUTOMATA THEORY

• Deals with the definitions and properties of mathematical models
of computation

• Finite automaton (used in text processing, compilers, hardware
design)

• Context-free grammar (used in programming languages and
artificial intelligence)

COMPLEXITY ANALYSIS

Why do we write programs?

➢ to perform some specific tasks

➢ to solve some specific problems

➢ We will focus on “solving problems”

➢ What is a “problem”?

➢ We can view a problem as a mapping of “inputs” to “outputs

COMPLEXITY CLASSES
 P AND NP

RECAP: DECISION PROBLEMS

• In the initial part of this course, we’ll focus primarily on decision problems.

• Decision problems can be naturally identified with boolean functions, i.e. functions
from {0,1}* to {0,1}.

• Boolean functions can be naturally identified with sets of {0,1} strings, also called
languages.

RECAP: DECISION PROBLEMS

Decision problems Boolean functions Languages

• Definition. We say a TM M decides a language L ⊆ {0,1}* if M computes fL, where fL(x) =
1 if and only if x ∈ L.

RECAP: COMPLEXITY CLASS P

• Let T: N N be some function.

• Definition: A language L is in DTIME(T(n)) if there’s a TM that decides L in time
O(T(n)).

• Defintion: Class P = ∪ DTIME (nc).

c > 0

Deterministic polynomial-time

COMPLEXITY CLASS P : EXAMPLES

• Cycle detection

• Solvabililty of a system of linear equations

• Perfect matching

• Primality testing (AKS test 2002)

➢ Check if a number is prime

POLYNOMIAL TIME TURING MACHINES

• Definition. A TM M is a polynimial time TM if there’s a polynomial function q: N N such that for every
input x ∈ {0,1}*, M halts within q(|x|) steps.

Polynomial function. q(n) = nc for some constant c

CLASS (FUNCTIONAL) P

• What if a problem is not a decision problem? Like the task of adding two integers.

CLASS (FUNCTIONAL) P

• What if a problem is not a decision problem? Like the task of adding two integers.

• One way is to focus on the i-th bit of the output and make it a decision problem.

 (Is the i-th bit, on input x, 1?)

CLASS (FUNCTIONAL) P

• What if a problem is not a decision problem? Like the task of adding two integers.

• One way is to focus on the i-th bit of the output and make it a decision problem.

• Alternatively, we define a class called functional P.

CLASS (FUNCTIONAL) P

• What if a problem is not a decision problem? Like the task of adding two integers.

• One way is to focus on the i-th bit of the output and make it a decision problem.

• We say that a problem or a function f: {0,1}* {0,1}* is in FP (functional P) if
there’s a polynomial-time TM that computes f.

COMPLEXITY CLASS FP : EXAMPLES

• Greatest Common Divisor (Euclid ~300 BC)

➢ Given two integers a and b, find their gcd.

COMPLEXITY CLASS FP : EXAMPLES

• Greatest Common Divisor

• Counting paths in a DAG (homework)

➢ Find the number of paths between two vertices in a directed

 acyclic graph.

COMPLEXITY CLASS FP : EXAMPLES

• Greatest Common Divisor

• Counting paths in a DAG

• Maximum matching (Edmonds 1965)

➢ Find a maximum matching in a given graph

COMPLEXITY CLASS NP

• Solving a problem is generally harder than verifying a given solution to the
problem.

COMPLEXITY CLASS NP

• Solving a problem is generally harder than verifying a given solution to the
problem.

• Class NP captures the set of decision problems whose solutions are efficiently
verifiable.

COMPLEXITY CLASS NP

• Solving a problem is generally harder than verifying a given solution to the
problem.

• Class NP captures the set of decision problems whose solutions are efficiently
verifiable.

Nondeterministic polynomial-time

COMPLEXITY CLASS NP

• Definition. A language L ⊆ {0,1}* is in NP if there’s a polynomial function p: N N
and a polynomial time TM M (called the verifier) such that for every x,

 x ∈ L ∃u ∈ {0,1}p(|x|) s.t. M(x, u) = 1

COMPLEXITY CLASS NP

• Definition. A language L ⊆ {0,1}* is in NP if there’s a polynomial
function p: N N and a polynomial time TM M (called the verifier)
such that for every x,

 x ∈ L ∃u ∈ {0,1}p(|x|) s.t. M(x, u) = 1

u is called a certificate or witness

for x (w.r.t L and M) if x ∈ L

COMPLEXITY CLASS NP

• Definition. A language L ⊆ {0,1}* is in NP if there’s a polynomial function p: N N
and a polynomial time TM M (called the verifier) such that for every x,

 x ∈ L ∃u ∈ {0,1}p(|x|) s.t. M(x, u) = 1

• It follows that verifier M cannot be fooled!

COMPLEXITY CLASS NP

• Definition. A language L ⊆ {0,1}* is in NP if there’s a polynomial function p: N N
and a polynomial time TM M (called the verifier) such that for every x,

 x ∈ L ∃u ∈ {0,1}p(|x|) s.t. M(x, u) = 1

• Class NP contains those problems (languages) which have such efficient verifiers.

CLASS NP : EXAMPLES

• Vertex cover

➢ Given a graph G and an integer k, check if G has a vertex cover of size k.

CLASS NP : EXAMPLES

• Vertex cover

• 0/1 integer programming

➢ Given a system of linear (in)equalities with integer coefficients, check if there’s a 0-1
assignment to the variables that satisfy all the (in)equalities.

CLASS NP : EXAMPLES

• Vertex cover

• 0/1 integer programming

• Integer factoring

➢ Given 2 numbers n and U, check if n has a nontrivial factor less than equal to U.

CLASS NP : EXAMPLES

• Vertex cover

• 0/1 integer programming

• Integer factoring

• Graph isomorphism

➢ Given 2 graphs, check if they are isomorphic

POLYNOMIAL TIME REDUCTION

• Definition. We say a language L1 ⊆ {0,1}* is polynomial time (Karp) reducible to a
language L2 ⊆ {0,1}* if there’s a polynomial time computable function f s.t.

 x∈L1 f(x)∈L2

L1

L1

L2

L2

f(L1)

f(L1)

POLYNOMIAL TIME REDUCTION

• Definition. We say a language L1 ⊆ {0,1}* is polynomial time (Karp) reducible to a
language L2 ⊆ {0,1}* if there’s a polynomial time computable function f s.t.

 x∈L1 f(x)∈L2

• Notation. L1 ≤p L2

• Observe. If L1 ≤p L2 and L2 ≤p L3 then L1 ≤p L3 .

NP-COMPLETENESS

• Definition. A language L’ is NP-hard if for every L in NP, L ≤p L’. Further, L’ is NP-
complete if L’ is in NP and is NP-hard.

• Observe. If L’ is NP-hard and L’ is in P then P = NP. If L’ is NP-complete then L’ in P if
and only if P = NP.

P

NPC

NP

Hardest problems inside NP in the sense
that if one NPC problem is in P then all
problems in NP is in P.

NP-COMPLETENESS

• Definition. A language L’ is NP-hard if for every L in NP, L ≤p L’. Further, L’ is NP-
complete if L’ is in NP and is NP-hard.

• Observe. If L’ is NP-hard and L’ is in P then P = NP. If L’ is NP-complete then L’ in P if
and only if P = NP.

• Exercise. Let L1 ⊆ {0,1}* be any language and L2 be a language in NP. If L1 ≤p L2 then
L1 is also in NP.

CLASS P AND NP : EXAMPLES

• Vertex cover (NP-complete)

• 0/1 integer programming (NP-complete)

• Integer factoring (unlikely to be NP-complete)

• Graph isomorphism (Quasi-P)

• Primality testing (P)

• Linear programming (P)

A NATURAL NP-COMPLETE PROBLEM

• Definition. A boolean formula on variables x1, …, xn consists of AND, OR and NOT
operations.

 e.g. ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2)

• Definition. A boolean formula ϕ is satisfiable if there’s a {0,1}-assignment to its
variables that makes ϕ evaluate to 1.

A NATURAL NP-COMPLETE PROBLEM

• Definition. A boolean formula is in Conjunctive Normal Form (CNF) if it is an
AND of OR of literals.

 e.g. ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2)

clauses

A NATURAL NP-COMPLETE PROBLEM

• Definition. A boolean formula is in Conjunctive
Normal Form (CNF) if it is an AND of OR of
literals.

 e.g. ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2)

literals

A NATURAL NP-COMPLETE PROBLEM

• Definition. A boolean formula is in Conjunctive Normal Form (CNF) if it is an AND of OR
of literals.

 e.g. ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2)

• Definition. Let SAT be the language consisting of all satisfiable CNF formulae.

A NATURAL NP-COMPLETE PROBLEM

• Definition. A boolean formula is in Conjunctive Normal Form (CNF) if it is an AND of OR
of literals.

 e.g. ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2)

• Definition. Let SAT be the language consisting of all satisfiable CNF formulae.

• Theorem. (Cook-Levin) SAT is NP-complete.

A NATURAL NP-COMPLETE PROBLEM

• Definition. A boolean formula is in Conjunctive Normal Form (CNF) if it is an AND of OR
of literals.

 e.g. ϕ = (x1 ∨ x2) ∧ (x3 ∨ ¬x2)

• Definition. Let SAT be the language consisting of all satisfiable CNF formulae.

• Theorem. (Cook-Levin) SAT is NP-complete.

 Easy to see that SAT is in NP.

 Need to show that SAT is NP-hard.

WEEK 13

NFA, - NFA - DFA EQUIVALENCE

WHAT IS AN NFA

• An NFA is an automaton that its states might
have none, one or more outgoing arrows
under a specific symbol.

0,1

• From q0 with 1 we can be either in q0 or q1.

• No outgoing arrows under 0 or 1 from q1.

WHAT IS AN NFA

• An NFA is an automaton that its states might

have none, one or more outgoing arrows
under a specific symbol.

1

• A DFA is by definition an NFA (each state has
exactly one outgoing arrow under each
symbol).

WHAT IS AN
NFA

• An NFA, is an NFA that might have c-moves. In
an c-move we can transport from one state to
the other without having any symbols.

• From q0 with 1 we can be either in q0 or q2.

WHAT IS AN
NFA

• An NFA, is an NFA that might have c-moves. In
an c-move we can transport from one state to
the other without having any symbols.

• An NFA is by definition an NFA, (but with no c-
moves).

NFA NFA, COMPUTATION

• An Non-Deterministic FA can have choices. If
there are two possible transitions under a
specific symbol, it can choose either of them
and follow it.

• Given some input string, there might be more
than one paths to follow. Some of them might
fail but, in order to accept, it suffices to find
one that succeeds.

NFA—NFA, COMPUTATION

An Non-Deterministic Finite Automaton
accepts an input string s if there exists a path
following transitions under the symbols of s
consecutively, that leads to an accepting state.

EXAMPLE

• This automaton accepts the string 1110 because there is a path under 1110 that

takes us to an accepting state

• (the path q04 1 q 0 4 1 q 0 4 1 q 0 4 0 q1).

EXAMPLE

• This automaton accepts the string 1110 because there is a path under 1110 that

takes us to an accepting state

• (the path q04 1 q 0 4 1 q 0 4 1 q 0 4 0 q1).

EXAMPLE

• This automaton accepts the string 1110 because there is a path under 1110 that

takes us to an accepting state

• (the path q04 1 q 0 4 1 q 0 4 1 q 0 4 0 q1).

EXAMPLE

• This automaton accepts the string 1110 because there is a path under 1110 that

takes us to an accepting state

• (the path q04 1 q 0 4 1 q 0 4 1 q 0 4 0 q1).

EXAMPLE

• This automaton accepts the string 1110 because there is a path under 1110 that

takes us to an accepting state

• (the path q04 1 q 0 4 1 q 0 4 1 q 0 4 0 q1).

EXAMPLE

• And that is so despite the fact that there are
some other paths under 1110 which do not
lead to an accepting state

(for example the path q 0 4 1 q 0 4 1 q0).

EXAMPLE

• And that is so despite the fact that there are
some other paths under 1110 which do not
lead to an accepting state

(for example the path q 0 4 1 q 0 4 1 qg).

EXAMPLE

• And that is so despite the fact that there are
some other paths under 1110 which do not
lead to an accepting state

(for example the path q 0 4 1 q 0 4 1 q0).

EXAMPLE

• However it doesn't accept the string 00

because there are no paths under 00 to take
us to q1.

(only possible path is q 0 4 0 q 1 4 0 q0).

EXAMPLE

• However it doesn't accept the string 00
because there are no paths under 00 to take
us to q1.

(only possible path is q 4 0 q 1 4 0 q0).

EXAMPLE

• However it doesn't accept the string 00
because there are no paths under 00 to take
us to q1.

(only possible path is q 4 0 q 1 4 0 q0).

NFA - NFAC ACCEPTANCE

• The language that a Non—Deterministic FA
recognizes is the set of strings which accepts.

• To see whether a string can get accepted or
not, it suffices to find the set of all possible
states in which the automaton can be
following all possible transitions suggested by
this string as an input and see if a final state is
contained in this set.

NFA ACCEPTANCE

• Whenever an arrow is followed, there is a set
of possible following states that the NFA can
be. This set of states is a subset of Q.

• For example with input being 0010 I have the
following sequence of sets of states:

1
0

IS NFA MORE POWERFUL THAN
DFA?

• Designing an NFA is sometimes mush easier
than constructing a DFA. For example, the
following NFA recognizes the language of all
binary strings that end with 010.

0,1

q2

NFA DFA

EQUIVALENCE

• It is obvious that a DFA is also an NFA.

• Somebody would expect the NFA to be more

powerful. We will see that this is not the case!

NFA—DFA EQUIVALENCE

• An NFA might have more than one or no
transitions under some symbol of the
alphabet.

NFA DFA EQUIVALENCE

• An NFA might have more than one or no
transitions under some symbol of the
alphabet.

• I can simulate all possible transitions in one
new state. This state should contain all the
reachable states under the same symbol.

a q’

a q”

NFA—DFA EQUIVALENCE

• The new DFA can possibly contain one state
for each subset of states of the NFA.

• Since all the subsets of Q are 2! | total, this
should be a finite (6 2!D) number of subsets!

• The NFA accepts if there is at least one path
that takes us to an accepting state. Thus, each
subset-state of the DFA containing an
accepting state of the NFA should be an
accepting one.

NFA—2DFA

Suppose that you want to find an equivalent
DFA for an NFA . The algorithm is the
following:

• Starting from the start state and for each
symbol in the alphabet, find the subset of
states that can be reached after following this

symbol and create a new state for each
subset.

NFA—2DFA

Suppose that you want to find an equivalent
DFA for an NFA . The algorithm is the
following:

• Repeat the same process for every new
subset-state that you are creating...

NFA—2DFA

Suppose that you want to find an equivalent
DFA for an NFA . The algorithm is the
following:

• Repeat the same process for every new
subset-state that you are creating...

• .. until no new subset-state can be created.

0

NFA—DFA EQUIVALENCE (EXAMPLE)

To find an equivalent DFA to the NFA of the
figure we complete the following table:

q lq I
Isib Iq q2I

Iq . q1I

»
I k qI I k q i2l t*‹ all
\q q2t Incl (Bo all

low q q2l Iq q q2\ lq all

0,1

NFA DFA EQUIVALENCE(EXAMPLE)

So the DFA is:

ïq q2ï

ïq q q2ï ïq q ï

NFA,—NFA EQUIVALENCE

• An NFA, is an NFA which might have c-moves.

• Again, somebody would think that this
attribute can make NFA, more powerful than
NFA. This is not the case since I can get rid of
the c-moves.

NFA, NFA EQUIVALENCE

• Suppose that I have an c-move like the one
shown in the figure. Since an c-move is like
teleporting from q1 to q2, I can remove the
c-move and add transitions from q directly
to every neighbor of q2.

0
q3

c 0
‹z ‹z4

q

0 q 0

0 0
q ‹z4 q 2

1 q

NFA,—NFA EQUIVALENCE

• If an c-move takes me from q1to q2 and q2 is
an accepting state, then, when removing the
c-move, I should convert q1 to an accepting
state.

0

EXAMPLE

1

0,c

EXAMPLE

1

0,c

EXAMPLE

1

0,c

EXAMPLE

1

0,c

0,c

EXAMPLE

1

0,s

0,c

EXAMPLE

0,1

1

0,c

EXAMPLE

0,1

1

0,e

EXAMPLE

0,1

1

EXAMPLE

0,1

1

WEEK 14

REVISION AND RECAP

Decidability and

Computability

Complexity Theory

Equivalence of NFA &

DFA (Revisited)

WEEK 15

FEEDBACK AND FUTURE DIRECTIONS ABOUT FINAL TERM

➢ Decidability and Computability: Understanding what problems computers can and cannot solve.

➢ Complexity Theory: Measuring the efficiency of algorithms and identifying their limitations.

➢ Equivalence of NFA & DFA: Core principles of automata theory with practical applications.

Decidability and Computability

• Key Concept: Decidable problems have algorithms that always provide a solution (e.g., checking if a number
is prime).
Undecidable problems, like the Halting Problem, lack such universal solutions.

• Real-World Impact: These ideas guide the boundaries of software and hardware capabilities.

Complexity Theory

• Key Concept: Complexity theory helps us classify problems based on resources like time and memory.

• P vs. NP: A central unsolved question—can every problem that’s easy to verify also be solved efficiently?

• Real-World Impact: Optimizing algorithms for tasks like data analysis, cryptography, and scheduling.

Equivalence of NFA & DFA

• Key Concept: NFAs and DFAs are equally powerful in recognizing regular languages, but differ in complexity.

• Real-World Impact: Used in building compilers, regex engines, and pattern-matching systems.

WEEK 16

FINAL DOCUMENTATION/PRESENTATION

Showcase application of Theory of Computation concepts in
a Documentation or Presentation.

WEEK 17

Final Examination revision and recap covering the entire course content

	Slide 1: Theory of Computation
	Slide 2
	Slide 3: Summary of Course Content
	Slide 4: Assessment Pattern
	Slide 5
	Slide 6
	Slide 7: Week 1
	Slide 8: Theory of Computation
	Slide 9: Complexity theory
	Slide 10: Computability Theory
	Slide 11: Automata theory
	Slide 12: Theory of Computation
	Slide 13: Week 2
	Slide 14: Finite Automata
	Slide 15: Finite State Machine
	Slide 16: Definition of Finite Automata
	Slide 17: Finite Automata Model
	Slide 18: Example
	Slide 19: Terminology
	Slide 20: Simulation
	Slide 21: Types of Automata
	Slide 22: Types of Automata
	Slide 23: Types of Automata
	Slide 24: Difference between DFA & NFA
	Slide 25: Week 3
	Slide 26: Types of Automata
	Slide 27: Types of Automata
	Slide 28: Types of Automata
	Slide 29
	Slide 30
	Slide 31: DFA
	Slide 32: Formal Definition of a DFA
	Slide 33
	Slide 34
	Slide 35: Nondeterministic Finite State Automata (NFA)
	Slide 36: Properties of NFA
	Slide 37: Running an NFA
	Slide 38: Example
	Slide 39: Week 4
	Slide 40: Example
	Slide 41: Example
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56: Symbol
	Slide 57: Alphabet
	Slide 58: String
	Slide 59: Length of String
	Slide 60: Empty String
	Slide 61: Language
	Slide 62: Power Of Σ
	Slide 63: Σ*
	Slide 64: Set
	Slide 65: CFG
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79: Foundations
	Slide 80: The Turing Machine
	Slide 81: Turing Machines
	Slide 82: The Language Hierarchy
	Slide 83
	Slide 84: A Turing Machine
	Slide 85
	Slide 86
	Slide 87
	Slide 88: The Input String
	Slide 89
	Slide 90: States & Transitions
	Slide 91
	Slide 93
	Slide 97: Halting
	Slide 98
	Slide 99: Final States
	Slide 100: Acceptance
	Slide 101: Turing Machine Example
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109: Infinite Loop Example
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115: Another Turing Machine Example
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134: Week 10
	Slide 135: Week 11
	Slide 136
	Slide 137
	Slide 138: Definition: Turing Machine
	Slide 139: Emptiness Testing
	Slide 140: DFA-Equivalence
	Slide 141: DFA-Equivalence
	Slide 142
	Slide 143: Decidable and Undecidable Problems in Theory of Computation
	Slide 144: Decidable
	Slide 145: Semi Decidable Problems
	Slide 146: Undecidable Problems
	Slide 147: Comparison: Decidable vs. Undecidable Problems
	Slide 148: Week 12
	Slide 149
	Slide 150
	Slide 151: Automata Theory
	Slide 152: Complexity Analysis
	Slide 153: Complexity classes P and NP
	Slide 154: Recap: Decision Problems
	Slide 155: Recap: Decision Problems
	Slide 156: Recap: Complexity Class P
	Slide 157: Complexity Class P : Examples
	Slide 158: Polynomial time Turing Machines
	Slide 159: Class (functional) P
	Slide 160: Class (functional) P
	Slide 161: Class (functional) P
	Slide 162: Class (functional) P
	Slide 163: Complexity Class FP : Examples
	Slide 164: Complexity Class FP : Examples
	Slide 165: Complexity Class FP : Examples
	Slide 166: Complexity Class NP
	Slide 167: Complexity Class NP
	Slide 168: Complexity Class NP
	Slide 169: Complexity Class NP
	Slide 170: Complexity Class NP
	Slide 171: Complexity Class NP
	Slide 172: Complexity Class NP
	Slide 173: Class NP : Examples
	Slide 174: Class NP : Examples
	Slide 175: Class NP : Examples
	Slide 176: Class NP : Examples
	Slide 177: Polynomial time reduction
	Slide 178: Polynomial time reduction
	Slide 179: NP-completeness
	Slide 180: NP-completeness
	Slide 181: Class P and NP : Examples
	Slide 182: A natural NP-complete problem
	Slide 183: A natural NP-complete problem
	Slide 184: A natural NP-complete problem
	Slide 185: A natural NP-complete problem
	Slide 186: A natural NP-complete problem
	Slide 187: A natural NP-complete problem
	Slide 188: Week 13
	Slide 189: NFA, - NFA - DFA equivalence
	Slide 190: What is an NFA
	Slide 191: What is an NFA
	Slide 192: What is an NFA
	Slide 193: What is an NFA
	Slide 194: NFA NFA, computation
	Slide 195: NFA — NFA, computation
	Slide 196: Example
	Slide 197: Example
	Slide 198: Example
	Slide 199: Example
	Slide 200: Example
	Slide 201: Example
	Slide 202: Example
	Slide 203: Example
	Slide 204: Example
	Slide 205: Example
	Slide 206: Example
	Slide 207: NFA - NFAc acceptance
	Slide 208: NFA acceptance
	Slide 209: Is NFA more powerful than DFA?
	Slide 210: NFA DFA equivalence
	Slide 211: NFA — DFA equivalence
	Slide 212: NFA DFA equivalence
	Slide 213: NFA — DFA equivalence
	Slide 214: NFA —2 DFA
	Slide 215: NFA —2 DFA
	Slide 216: NFA —2 DFA
	Slide 217: NFA — DFA equivalence (example)
	Slide 218: NFA DFA equivalence (example)
	Slide 219: NFA, — NFA equivalence
	Slide 220: NFA, NFA equivalence
	Slide 221: NFA, — NFA equivalence
	Slide 222: Example
	Slide 223: Example
	Slide 224: Example
	Slide 225: Example
	Slide 226: Example
	Slide 227: Example
	Slide 228: Example
	Slide 229: Example
	Slide 230: Example
	Slide 231: Week 14
	Slide 232: Revision and Recap
	Slide 233: Week 15
	Slide 234: Feedback and Future Directions about Final Term
	Slide 235
	Slide 236
	Slide 237
	Slide 238: Week 16
	Slide 239: Final Documentation/Presentation
	Slide 240: Week 17

